Summary: | In the Kanto region of Japan, a large quantity of natural gas is dissolved in brine. The large-scale production of gas and iodine in the region has caused large-scale land subsidence in the past. Therefore, continuous and accurate monitoring for subsidence using satellite remote sensing is essential to prevent extreme subsidence and ensure the safety of residences. This study focused on the small baseline subset (SBAS) method to assess ground deformation trends around the Kanto region. Data for the SBAS method was acquired by the Advanced Land Observing Satellite (ALOS)-2 Phased Array type L-band Synthetic Aperture Radar (PALSAR)-2 from 2015 to 2019. A comparison of our results with reference levelling data shows that the SBAS method underestimates displacement. We corrected our results using linear regression and determined the maximum displacement around the Kujyukuri area to be approximately 20 mm/year; the mean displacement rate for 2015−2019 was −7.9 ± 2.9 mm/year. These values exceed those obtained using past PALSAR observations owing to the horizontal displacement after the Great East Japan Earthquake of 2011. Moreover, fewer points were acquired, and the root mean-squared error of each time-series displacement value was larger in our results. Further analysis is needed to address these bias errors.
|