Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada

In this work, a comparative study of feature selection methods for supervised and unsupervised inference obtained from classical PCA is presented. We deduce an expression for the cost function of PCA based on the mean square error of data and its orthonormal projection, and then this concept is exte...

Full description

Bibliographic Details
Main Authors: Diego H. Peluffo-Ordóñez, José L. Rodríguez-Sotelo, Germán Castellanos-Domínguez
Format: Article
Language:English
Published: Instituto Tecnológico Metropolitano 2009-12-01
Series:TecnoLógicas
Subjects:
Online Access:http://itmojs.itm.edu.co/index.php/tecnologicas/article/view/242
_version_ 1819027354869039104
author Diego H. Peluffo-Ordóñez
José L. Rodríguez-Sotelo
Germán Castellanos-Domínguez
author_facet Diego H. Peluffo-Ordóñez
José L. Rodríguez-Sotelo
Germán Castellanos-Domínguez
author_sort Diego H. Peluffo-Ordóñez
collection DOAJ
description In this work, a comparative study of feature selection methods for supervised and unsupervised inference obtained from classical PCA is presented. We deduce an expression for the cost function of PCA based on the mean square error of data and its orthonormal projection, and then this concept is extended to obtain an expression for general WPCA. Additionally, we study the supervised and unsupervised Q – α algorithm and its relation with PCA. At the end, we present results employing two data sets: A low-dimensional data set to analyze the effects of orthonormal rotation, and a highdimensional data set to assess the classification performance. The feature selection methods were assessed taking into account the number of relevant features, computational cost and classification performance. The classification was carried out using a partitional clustering algorithm.
first_indexed 2024-12-21T05:41:09Z
format Article
id doaj.art-e69bb7db743240a497ba7bda677e0a1a
institution Directory Open Access Journal
issn 0123-7799
2256-5337
language English
last_indexed 2024-12-21T05:41:09Z
publishDate 2009-12-01
publisher Instituto Tecnológico Metropolitano
record_format Article
series TecnoLógicas
spelling doaj.art-e69bb7db743240a497ba7bda677e0a1a2022-12-21T19:14:15ZengInstituto Tecnológico MetropolitanoTecnoLógicas0123-77992256-53372009-12-01023149166215Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No SupervisadaDiego H. Peluffo-Ordóñez0José L. Rodríguez-Sotelo1Germán Castellanos-Domínguez2Ingeniera Electrónica. Estudiante de maestría en Ingeniería - Automatización Industrial. Universidad Nacional de Colombia, ManizalesIngeniero Electrónico. Estudiante de doctorado en Ingeniería – Línea de automática. Universidad Nacional de Colombia, ManizalesIngeniero en Telecomunicaciones. Ph. D. en Ingeniería. Profesor asociado al Departamento de Ingeniería Eléctrica, Electrónica y Computación de la Universidad Nacional de Colombia, MedellínIn this work, a comparative study of feature selection methods for supervised and unsupervised inference obtained from classical PCA is presented. We deduce an expression for the cost function of PCA based on the mean square error of data and its orthonormal projection, and then this concept is extended to obtain an expression for general WPCA. Additionally, we study the supervised and unsupervised Q – α algorithm and its relation with PCA. At the end, we present results employing two data sets: A low-dimensional data set to analyze the effects of orthonormal rotation, and a highdimensional data set to assess the classification performance. The feature selection methods were assessed taking into account the number of relevant features, computational cost and classification performance. The classification was carried out using a partitional clustering algorithm.http://itmojs.itm.edu.co/index.php/tecnologicas/article/view/242Proyección ortonormalPCAselección de característicasWPCA.
spellingShingle Diego H. Peluffo-Ordóñez
José L. Rodríguez-Sotelo
Germán Castellanos-Domínguez
Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada
TecnoLógicas
Proyección ortonormal
PCA
selección de características
WPCA.
title Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada
title_full Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada
title_fullStr Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada
title_full_unstemmed Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada
title_short Estudio Comparativo de Métodos de Selección de Características de Inferencia Supervisada y No Supervisada
title_sort estudio comparativo de metodos de seleccion de caracteristicas de inferencia supervisada y no supervisada
topic Proyección ortonormal
PCA
selección de características
WPCA.
url http://itmojs.itm.edu.co/index.php/tecnologicas/article/view/242
work_keys_str_mv AT diegohpeluffoordonez estudiocomparativodemetodosdeselecciondecaracteristicasdeinferenciasupervisadaynosupervisada
AT joselrodriguezsotelo estudiocomparativodemetodosdeselecciondecaracteristicasdeinferenciasupervisadaynosupervisada
AT germancastellanosdominguez estudiocomparativodemetodosdeselecciondecaracteristicasdeinferenciasupervisadaynosupervisada