Summary: | While prenatal exposure to ambient air pollution has been shown to be associated with reduced birth weight, there is substantial heterogeneity across studies, and few epidemiological studies have utilized source-specific exposure data. The aim of the present study was, therefore, to investigate the associations between local, source-specific exposure to fine particulate matter (PM<sub>2.5</sub>) during pregnancy and birth weight. An administrative cohort comprising 40,245 singleton births from 2000 to 2009 in Scania, Sweden, was combined with data on relevant covariates. Investigated sources of PM<sub>2.5</sub> included all local sources together as well as tailpipe exhaust, vehicle wear-and-tear, and small-scale residential heating separately. The relationships between these exposures, represented as interquartile range (IQR) increases, and birth weight (continuous) and low birth weight (LBW; <2500 g) were analyzed in crude and adjusted models. Each local PM<sub>2.5</sub> source investigated was associated with reduced birth weight; average decreases varied by source (12–34 g). Only small-scale residential heating was clearly associated with LBW (adjusted odds ratio: 1.14 (95% confidence interval: 1.04–1.26) per IQR increase). These results add to existing evidence that prenatal exposure to ambient air pollution disrupts fetal growth and suggest that PM<sub>2.5</sub> from both vehicles and small-scale residential heating may reduce birth weight.
|