Colorimetric Freshness Indicator Based on Cellulose Nanocrystal–Silver Nanoparticle Composite for Intelligent Food Packaging

In this study, a colorimetric freshness indicator based on cellulose nanocrystal-silver nanoparticles (CNC-AgNPs) was successfully fabricated to offer a convenient approach for monitoring the quality of packaged food. AgNPs were directly synthesized and embedded in CNC via a one-pot hydrothermal gre...

Full description

Bibliographic Details
Main Authors: Seongyoung Kwon, Seonghyuk Ko
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/17/3695
Description
Summary:In this study, a colorimetric freshness indicator based on cellulose nanocrystal-silver nanoparticles (CNC-AgNPs) was successfully fabricated to offer a convenient approach for monitoring the quality of packaged food. AgNPs were directly synthesized and embedded in CNC via a one-pot hydrothermal green synthesis, and CNC-AgNP composited indicator films were prepared using a simple casting method. The AgNPs obtained were confirmed by UV-Vis diffuse reflectance spectroscopy and X-ray diffraction. The ability of the as-prepared CNC-AgNP film to indicate food quality was assessed in terms of the intensity of its color change when in contact with spoilage gases from chicken breast. The CNC-AgNP films initially exhibited a yellowish to dark wine-red color depending on the amount of AgNPs involved. They gradually turned colorless and subsequently to metallic grey. This transition is attributed to the reaction of AgNPs and hydrogen sulfide (H<sub>2</sub>S), which alters the surface plasmon resonance of AgNPs. Consequently, the color change was suitably discernible to the human eye, implying that the CNC-AgNP composite is a highly effective colorimetric freshness indicator. It can potentially serve as an accurate and irreversible food quality indicator in intelligent packaging during distribution or storage of products that emit hydrogen sulfide when deteriorating, such as poultry products or broccoli.
ISSN:2073-4360