Asymptotical analysis of some coupled nonlinear wave equations
We consider coupled nonlinear equations modelling a family of travelling wave solutions. The goal of our work is to show that the method of internal averaging along characteristics can be used for wide classes of coupled non-linear wave equations such as Korteweg-de Vries, Klein – Gordon, Hirota – S...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2011-04-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/5512 |
Summary: | We consider coupled nonlinear equations modelling a family of travelling wave solutions. The goal of our work is to show that the method of internal averaging along characteristics can be used for wide classes of coupled non-linear wave equations such as Korteweg-de Vries, Klein – Gordon, Hirota – Satsuma, etc. The asymptotical analysis reduces a system of coupled non-linear equations to a system of integro – differential averaged equations. The averaged system with the periodical initial conditions disintegrates into independent equations in non-resonance case. These equations describe simple weakly non-linear travelling waves in the non-resonance case. In the resonance case the integro – differential averaged systems describe interaction of waves and give a good asymptotical approximation for exact solutions. |
---|---|
ISSN: | 1392-6292 1648-3510 |