Summary: | In recent years, shell model studies have significantly contributed in improving the nuclear input, required in simulations of the dynamics of astrophysical objects and their associated nucleosynthesis. This review highlights a few examples such as electron capture rates and neutrino-nucleus cross sections, important for the evolution and nucleosynthesis of supernovae. For simulations of rapid neutron-capture (r-process) nucleosynthesis, shell model studies have contributed to an improved understanding of half lives of neutron-rich nuclei with magic neutron numbers and of the nuclear level densities and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-strength functions that are both relevant for neutron capture rates.
|