On the stability of nonautonomous binary dynamical systems of partial differential equations
Nonlinear nonautonomoua binary reaction-diffusion dynamical systems of partial differential equations (PDE) are considered. Stability criteria - via a nonautonomous L²-energy - are obtained. Applications to nonautonomous Lotka-volterra systems of PDEs and to “preys” struggle for the life, are furnis...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Peloritana dei Pericolanti
2013-01-01
|
Series: | Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
Online Access: | http://dx.doi.org/10.1478/AAPP.91S1A17 |
_version_ | 1811265765889802240 |
---|---|
author | Salvatore Rionero |
author_facet | Salvatore Rionero |
author_sort | Salvatore Rionero |
collection | DOAJ |
description | Nonlinear nonautonomoua binary reaction-diffusion dynamical systems of partial differential equations (PDE) are considered. Stability criteria - via a nonautonomous L²-energy - are obtained. Applications to nonautonomous Lotka-volterra systems of PDEs and to “preys” struggle for the life, are furnished. |
first_indexed | 2024-04-12T20:29:49Z |
format | Article |
id | doaj.art-e6cbd1067b19450fb9d23c59647c0660 |
institution | Directory Open Access Journal |
issn | 0365-0359 1825-1242 |
language | English |
last_indexed | 2024-04-12T20:29:49Z |
publishDate | 2013-01-01 |
publisher | Accademia Peloritana dei Pericolanti |
record_format | Article |
series | Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
spelling | doaj.art-e6cbd1067b19450fb9d23c59647c06602022-12-22T03:17:47ZengAccademia Peloritana dei PericolantiAtti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali0365-03591825-12422013-01-0191S1A1710.1478/AAPP.91S1A17On the stability of nonautonomous binary dynamical systems of partial differential equationsSalvatore RioneroNonlinear nonautonomoua binary reaction-diffusion dynamical systems of partial differential equations (PDE) are considered. Stability criteria - via a nonautonomous L²-energy - are obtained. Applications to nonautonomous Lotka-volterra systems of PDEs and to “preys” struggle for the life, are furnished.http://dx.doi.org/10.1478/AAPP.91S1A17 |
spellingShingle | Salvatore Rionero On the stability of nonautonomous binary dynamical systems of partial differential equations Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
title | On the stability of nonautonomous binary dynamical systems of partial differential equations |
title_full | On the stability of nonautonomous binary dynamical systems of partial differential equations |
title_fullStr | On the stability of nonautonomous binary dynamical systems of partial differential equations |
title_full_unstemmed | On the stability of nonautonomous binary dynamical systems of partial differential equations |
title_short | On the stability of nonautonomous binary dynamical systems of partial differential equations |
title_sort | on the stability of nonautonomous binary dynamical systems of partial differential equations |
url | http://dx.doi.org/10.1478/AAPP.91S1A17 |
work_keys_str_mv | AT salvatorerionero onthestabilityofnonautonomousbinarydynamicalsystemsofpartialdifferentialequations |