MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review
Background: Stroke-related disability is a major problem at individual and socio-economic levels. Neuromotor rehabilitation has a key role for its dual action on affected body segment and brain reorganization. Despite its known efficacy in clinical practice, the extent and type of effect at a brain...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-01-01
|
Series: | NeuroImage: Clinical |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213158221003752 |
_version_ | 1818286702164180992 |
---|---|
author | E. Tavazzi N. Bergsland A. Pirastru M. Cazzoli V. Blasi F. Baglio |
author_facet | E. Tavazzi N. Bergsland A. Pirastru M. Cazzoli V. Blasi F. Baglio |
author_sort | E. Tavazzi |
collection | DOAJ |
description | Background: Stroke-related disability is a major problem at individual and socio-economic levels. Neuromotor rehabilitation has a key role for its dual action on affected body segment and brain reorganization. Despite its known efficacy in clinical practice, the extent and type of effect at a brain level, mediated by neuroplasticity, are still under question. Objective: To analyze studies applying MRI markers of functional and structural connectivity in patients affected with stroke undergoing motor rehabilitation, and to evaluate the effect of rehabilitation on brain reorganization. Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria were applied to select studies applying quantitative non-conventional MRI techniques on patients undergoing motor rehabilitation, both physical and virtual (virtual reality, mental imagery). Literature search was conducted using MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE from inception to 30th June 2020. Results: Forty-one out of 6983 papers were included in the current review. Selected studies are heterogeneous in terms of patient characteristics as well as type, duration and frequency of rehabilitative approach. Neuromotor rehabilitation promotes neuroplasticity, favoring functional recovery of the ipsilesional hemisphere and activation of anatomically and functionally related brain areas in both hemispheres, to compensate for damaged tissue. Conclusions: The evidence derived from the analyzed studies supports the positive impact of rehabilitation on brain reorganization, despite the high data heterogeneity. Advanced MRI techniques provide reliable markers of structural and functional connectivity that may potentially aid in helping to implement the most appropriate rehabilitation intervention. |
first_indexed | 2024-12-13T01:28:47Z |
format | Article |
id | doaj.art-e6d81873ce054ca8b7589e851cc09d97 |
institution | Directory Open Access Journal |
issn | 2213-1582 |
language | English |
last_indexed | 2024-12-13T01:28:47Z |
publishDate | 2022-01-01 |
publisher | Elsevier |
record_format | Article |
series | NeuroImage: Clinical |
spelling | doaj.art-e6d81873ce054ca8b7589e851cc09d972022-12-22T00:04:04ZengElsevierNeuroImage: Clinical2213-15822022-01-0133102931MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic reviewE. Tavazzi0N. Bergsland1A. Pirastru2M. Cazzoli3V. Blasi4F. Baglio5IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United StatesIRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Corresponding author at: IRCCS Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148 Milano, Italy.IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, ItalyIRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, ItalyIRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, ItalyIRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, ItalyBackground: Stroke-related disability is a major problem at individual and socio-economic levels. Neuromotor rehabilitation has a key role for its dual action on affected body segment and brain reorganization. Despite its known efficacy in clinical practice, the extent and type of effect at a brain level, mediated by neuroplasticity, are still under question. Objective: To analyze studies applying MRI markers of functional and structural connectivity in patients affected with stroke undergoing motor rehabilitation, and to evaluate the effect of rehabilitation on brain reorganization. Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria were applied to select studies applying quantitative non-conventional MRI techniques on patients undergoing motor rehabilitation, both physical and virtual (virtual reality, mental imagery). Literature search was conducted using MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE from inception to 30th June 2020. Results: Forty-one out of 6983 papers were included in the current review. Selected studies are heterogeneous in terms of patient characteristics as well as type, duration and frequency of rehabilitative approach. Neuromotor rehabilitation promotes neuroplasticity, favoring functional recovery of the ipsilesional hemisphere and activation of anatomically and functionally related brain areas in both hemispheres, to compensate for damaged tissue. Conclusions: The evidence derived from the analyzed studies supports the positive impact of rehabilitation on brain reorganization, despite the high data heterogeneity. Advanced MRI techniques provide reliable markers of structural and functional connectivity that may potentially aid in helping to implement the most appropriate rehabilitation intervention.http://www.sciencedirect.com/science/article/pii/S2213158221003752StrokeMRINeuroplasticityRehabilitationConnectivityfMRI |
spellingShingle | E. Tavazzi N. Bergsland A. Pirastru M. Cazzoli V. Blasi F. Baglio MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review NeuroImage: Clinical Stroke MRI Neuroplasticity Rehabilitation Connectivity fMRI |
title | MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review |
title_full | MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review |
title_fullStr | MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review |
title_full_unstemmed | MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review |
title_short | MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review |
title_sort | mri markers of functional connectivity and tissue microstructure in stroke related motor rehabilitation a systematic review |
topic | Stroke MRI Neuroplasticity Rehabilitation Connectivity fMRI |
url | http://www.sciencedirect.com/science/article/pii/S2213158221003752 |
work_keys_str_mv | AT etavazzi mrimarkersoffunctionalconnectivityandtissuemicrostructureinstrokerelatedmotorrehabilitationasystematicreview AT nbergsland mrimarkersoffunctionalconnectivityandtissuemicrostructureinstrokerelatedmotorrehabilitationasystematicreview AT apirastru mrimarkersoffunctionalconnectivityandtissuemicrostructureinstrokerelatedmotorrehabilitationasystematicreview AT mcazzoli mrimarkersoffunctionalconnectivityandtissuemicrostructureinstrokerelatedmotorrehabilitationasystematicreview AT vblasi mrimarkersoffunctionalconnectivityandtissuemicrostructureinstrokerelatedmotorrehabilitationasystematicreview AT fbaglio mrimarkersoffunctionalconnectivityandtissuemicrostructureinstrokerelatedmotorrehabilitationasystematicreview |