Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: an essential oil isolated from Rosa Damascena Mill., and vitamin C

Parkinson disease (PD) is a multifactorial disease that takes a leading place among contemporary frequent diseases of the central nervous system (CNS) with not well-established mechanism. One of the most popular and effective therapy for patients with PD is Levodopa (L-dopa), but clinical effect of...

Full description

Bibliographic Details
Main Authors: Galina Nikolova, Yanka Karamalakova, Veselina Gadjeva
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:Toxicology Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2214750018305171
Description
Summary:Parkinson disease (PD) is a multifactorial disease that takes a leading place among contemporary frequent diseases of the central nervous system (CNS) with not well-established mechanism. One of the most popular and effective therapy for patients with PD is Levodopa (L-dopa), but clinical effect of the drug diminished by motor complications resulting from prolonged treatment. Due to the L-dopa neurotoxic effect in the disease treatment, the L-dopa administration is delayed as long as possible in order to avoid side effects. In addition, combining L-dopa therapy with antioxidants, may decrease side-effects and provide symptomatic relief. The aim of the current research was to explore the possibility to reduce the oxidative stress (OS) induced by the L-dopa after its combining with two different antioxidants an essential oil isolated from Rosa damascena Mill., and vitamin C through experimental model of healthy mice. For this purpose, some oxidative stress indicators were evaluated - the lipid and protein oxidation end products – such as lipid peroxidation products measured as malondialdehyde (MDA) levels, protein carbonyl content (PCC), and advanced glycation end products (AGEs) in blood plasma of the experimental mice. For this purpose, was studied blood isolated from healthy mice after i.p. treatment with L-dopa (100 mg/kg). The groups with combining therapy were pre-treated first with Ascorbic acid (400 mg/kg), Rose oil (400 mg/kg). Statistically significant increased MDA levels, PCC and AGEs were found in the blood L-dopa treated mice compared to the controls, while the same parameters were significantly decreased in group pre-treated with antioxidants compared to the same controls. As a conclusion, the studied antioxidants can protect organisms from induced L-dopa oxidative toxicity and may play a key role in end products protection. Keywords: Parkinson disease, Oxidative stress, L-dopa, Antioxidants, PCC, AGEs
ISSN:2214-7500