Degree distance and Gutman index of increasing trees

‎‎The Gutman index and degree distance of a connected graph G G are defined as‎ ‎‎‎Gut(G)=∑ {u,v}⊆V(G) d(u)d(v)d G (u,v)‎,‎ ‎‎Gut(G)=∑{u,v}⊆V(G)d(u)d(v)dG(u,v)‎,‎‎ ‎and‎ ‎‎‎DD(G)=∑ {u,v}⊆V(G) (d(u)+d(v))d G (u,v)‎,‎ ‎‎DD(G)=∑{u,v}⊆V(G)(d(u)+d(v))dG(u,v)‎,‎‎ ‎respectively‎, ‎where‎ ‎d(u) d(...

Full description

Bibliographic Details
Main Authors: Ramin Kazemi, Leila Meimondari
Format: Article
Language:English
Published: University of Isfahan 2016-06-01
Series:Transactions on Combinatorics
Subjects:
Online Access:http://www.combinatorics.ir/article_9915_00377372a764b119bb3640a24a194a64.pdf
_version_ 1811214832126394368
author Ramin Kazemi
Leila Meimondari
author_facet Ramin Kazemi
Leila Meimondari
author_sort Ramin Kazemi
collection DOAJ
description ‎‎The Gutman index and degree distance of a connected graph G G are defined as‎ ‎‎‎Gut(G)=∑ {u,v}⊆V(G) d(u)d(v)d G (u,v)‎,‎ ‎‎Gut(G)=∑{u,v}⊆V(G)d(u)d(v)dG(u,v)‎,‎‎ ‎and‎ ‎‎‎DD(G)=∑ {u,v}⊆V(G) (d(u)+d(v))d G (u,v)‎,‎ ‎‎DD(G)=∑{u,v}⊆V(G)(d(u)+d(v))dG(u,v)‎,‎‎ ‎respectively‎, ‎where‎ ‎d(u) d(u) is the degree of vertex u u and d G (u,v) dG(u,v) is the distance between vertices u u and v v‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎.
first_indexed 2024-04-12T06:11:07Z
format Article
id doaj.art-e6e9fad4538e4ccaaa779aed3e9392f5
institution Directory Open Access Journal
issn 2251-8657
2251-8665
language English
last_indexed 2024-04-12T06:11:07Z
publishDate 2016-06-01
publisher University of Isfahan
record_format Article
series Transactions on Combinatorics
spelling doaj.art-e6e9fad4538e4ccaaa779aed3e9392f52022-12-22T03:44:42ZengUniversity of IsfahanTransactions on Combinatorics2251-86572251-86652016-06-01522331Degree distance and Gutman index of increasing treesRamin Kazemi0Leila Meimondari1Department of statistics, Imam Khomeini International University, QazvinImam Khomeini International University‎‎The Gutman index and degree distance of a connected graph G G are defined as‎ ‎‎‎Gut(G)=∑ {u,v}⊆V(G) d(u)d(v)d G (u,v)‎,‎ ‎‎Gut(G)=∑{u,v}⊆V(G)d(u)d(v)dG(u,v)‎,‎‎ ‎and‎ ‎‎‎DD(G)=∑ {u,v}⊆V(G) (d(u)+d(v))d G (u,v)‎,‎ ‎‎DD(G)=∑{u,v}⊆V(G)(d(u)+d(v))dG(u,v)‎,‎‎ ‎respectively‎, ‎where‎ ‎d(u) d(u) is the degree of vertex u u and d G (u,v) dG(u,v) is the distance between vertices u u and v v‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎.http://www.combinatorics.ir/article_9915_00377372a764b119bb3640a24a194a64.pdf‎‎Increasing trees‎the Wiener index‎‎the Gutman index‎‎degree distance
spellingShingle Ramin Kazemi
Leila Meimondari
Degree distance and Gutman index of increasing trees
Transactions on Combinatorics
‎‎Increasing trees‎
the Wiener index‎
‎the Gutman index‎
‎degree distance
title Degree distance and Gutman index of increasing trees
title_full Degree distance and Gutman index of increasing trees
title_fullStr Degree distance and Gutman index of increasing trees
title_full_unstemmed Degree distance and Gutman index of increasing trees
title_short Degree distance and Gutman index of increasing trees
title_sort degree distance and gutman index of increasing trees
topic ‎‎Increasing trees‎
the Wiener index‎
‎the Gutman index‎
‎degree distance
url http://www.combinatorics.ir/article_9915_00377372a764b119bb3640a24a194a64.pdf
work_keys_str_mv AT raminkazemi degreedistanceandgutmanindexofincreasingtrees
AT leilameimondari degreedistanceandgutmanindexofincreasingtrees