Quantum simulation of a spin polarization device in an electron microscope

A proposal for an electron-beam device that can act as an efficient spin-polarization filter has been recently put forward (Karimi et al 2012 Phys. Rev. Lett. 108 044801). It is based on combining the recently developed diffraction technology for imposing orbital angular momentum to the beam with a...

Full description

Bibliographic Details
Main Authors: Vincenzo Grillo, Lorenzo Marrucci, Ebrahim Karimi, Riccardo Zanella, Enrico Santamato
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/9/093026
Description
Summary:A proposal for an electron-beam device that can act as an efficient spin-polarization filter has been recently put forward (Karimi et al 2012 Phys. Rev. Lett. 108 044801). It is based on combining the recently developed diffraction technology for imposing orbital angular momentum to the beam with a multipolar Wien filter inducing a sort of artificial non-relativistic spin–orbit coupling. Here we reconsider the proposed device with a fully quantum-mechanical simulation of the electron-beam propagation, based on the well-established multi-slice method, supplemented with a Pauli term for taking into account the spin degree of freedom. Using this upgraded numerical tool, we study the feasibility and practical limitations of the proposed method for spin polarizing a free electron beam.
ISSN:1367-2630