Comparative genomic analysis and phylogenetic position of <it>Theileria equi</it>

<p>Abstract</p> <p>Background</p> <p>Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as <it>Piroplasma equ...

Full description

Bibliographic Details
Main Authors: Kappmeyer Lowell S, Thiagarajan Mathangi, Herndon David R, Ramsay Joshua D, Caler Elisabet, Djikeng Appolinaire, Gillespie Joseph J, Lau Audrey OT, Roalson Eric H, Silva Joana C, Silva Marta G, Suarez Carlos E, Ueti Massaro W, Nene Vishvanath M, Mealey Robert H, Knowles Donald P, Brayton Kelly A
Format: Article
Language:English
Published: BMC 2012-11-01
Series:BMC Genomics
Subjects:
Online Access:http://www.biomedcentral.com/1471-2164/13/603
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as <it>Piroplasma equi</it>, this re-emergent apicomplexan parasite was renamed <it>Babesia equi</it> and subsequently <it>Theileria equi</it>, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of <it>T</it>. <it>equi</it> from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of <it>T</it>. <it>equi</it> was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of <it>T</it>. <it>equi</it> relative to sequenced apicomplexan parasites.</p> <p>Results</p> <p>The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that <it>T</it>. <it>equi</it> infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the <it>T</it>. <it>equi</it> genome. Comparative genomic analysis of <it>T</it>. <it>equi</it> revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to <it>Theileria spp</it>.</p> <p>Conclusions</p> <p>The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. <it>T</it>. <it>equi</it> has lost the putative genes for host cell transformation, or the genes were acquired by <it>T</it>. <it>parva</it> and <it>T</it>. <it>annulata</it> after divergence from <it>T</it>. <it>equi</it>. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of <it>T</it>. <it>equi</it> and closely related organisms.</p>
ISSN:1471-2164