Strong zero-field Förster resonances in K-Rb Rydberg systems
We study resonant dipole-dipole coupling and the associated van der Waals energy shifts in Rydberg excited atomic rubidium and potassium and investigate Förster resonances between interspecies pair states. A comprehensive survey over experimentally accessible pair state combinations reveals multiple...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-09-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.2.033474 |
Summary: | We study resonant dipole-dipole coupling and the associated van der Waals energy shifts in Rydberg excited atomic rubidium and potassium and investigate Förster resonances between interspecies pair states. A comprehensive survey over experimentally accessible pair state combinations reveals multiple candidates with small Förster defects. We crucially identify the existence of an ultrastrong, “low” electric field K-Rb Förster resonance with an extremely large zero-field crossover distance exceeding 100μm between the van der Waals regime and the resonant regime. This resonance allows for a strong interaction over a wide range of distances and by investigating its dependence on the strength and orientation of external fields we show this to be largely isotropic. As a result, the resonance offers a highly favorable setting for studying long-range resonant excitation transfer and entanglement generation between atomic ensembles in a flexible geometry. The two-species K-Rb system establishes a unique way of realizing a Rydberg single-photon optical transistor with a high input photon rate and we specifically investigate an experimental scheme with two separate ensembles. |
---|---|
ISSN: | 2643-1564 |