Incoherent Interference Detection and Mitigation for Millimeter-Wave FMCW Radars

Current automotive radar technology is almost exclusively implemented using frequency modulated continuous wave (FMCW) radar in the millimeter wave bands. Unfortunately, incoherent interference is becoming a serious problem due to the increasing number of automotive radars in dense traffic situation...

Full description

Bibliographic Details
Main Authors: Zhihuo Xu, Shuaikang Xue, Yuexia Wang
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/19/4817
Description
Summary:Current automotive radar technology is almost exclusively implemented using frequency modulated continuous wave (FMCW) radar in the millimeter wave bands. Unfortunately, incoherent interference is becoming a serious problem due to the increasing number of automotive radars in dense traffic situations. To address this issue, this article presents a sparsity-based technique for mitigating the incoherent interference between FMCW radars. First, a low-pass filter-based technique is developed to detect the envelope of the interference. Next, the labeled regions where interference is present are considered as missing data. In this way, the problem of mitigating interference is further formulated as the restoration of the echo using L1 norm-regularized least squares. Finally, the alternating direction method of the multipliers-based technique is applied to restore the radar echoes. Extensive experimental results demonstrate the effective performance of the proposed approach. Compared to state-of-the-art interference mitigation methods, the proposed method remarkably improves the quality of radar targets.
ISSN:2072-4292