Radiative properties of flue gas under high-altitude sub-atmospheric pressure
The special geography of the plateau area leads to a series of problems in boiler operation. In this study, the absorption coefficients and total emissivity of flue gas were determined under different air pressures during air combustion using the Line-By-Line (LBL) method based on the HITEMP2010 dat...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Office of Journal of China Coal Society
2024-03-01
|
Series: | Meitan xuebao |
Subjects: | |
Online Access: | http://www.mtxb.com.cn/article/doi/10.13225/j.cnki.jccs.ZZ23.1000 |
_version_ | 1797230629769707520 |
---|---|
author | Defu CHE Qiaopeng YAO Jin WANG Lingxiao DONG Jiming YU Yaodong DA Lei DENG |
author_facet | Defu CHE Qiaopeng YAO Jin WANG Lingxiao DONG Jiming YU Yaodong DA Lei DENG |
author_sort | Defu CHE |
collection | DOAJ |
description | The special geography of the plateau area leads to a series of problems in boiler operation. In this study, the absorption coefficients and total emissivity of flue gas were determined under different air pressures during air combustion using the Line-By-Line (LBL) method based on the HITEMP2010 database (High-temperature molecular spectroscopic database). The effects of pressure, temperature, and molar fraction (H2O and CO2) on the radiative properties of flue gas were analyzed. An improved Weighted-Sum-of-Gray-Gases (WSGG) correlation, which relates the absorption coefficients to temperature and total pressure, was proposed. The results show that the reduced total pressure diminishes the total emissivity of flue gas. The maximum differences in total emissivity along the path lengths for the four working conditions with a pressure drop from 0.101 325 to 0.061 655 are 0.093 4, 0.084 5, 0.091 1, and 0.084 3, respectively. For a larger molar fraction, the effect of pressure on the total emissivity is greater for shorter path lengths but not for longer ones. Similarly, the higher temperature would reduce the total emissivity of flue gas. The maximum differences in total emissivity along the path lengths for the four working conditions with a temperature increase from 1 000 K to 2 500 K are 0.273 6, 0.270 5, 0.251 5, and 0.250 5, respectively. For a larger molar fraction, temperature has a greater effect on the total emissivity for shorter path lengths but not for longer ones. Furthermore, increasing the molar fraction enhances the total emissivity of flue gas. The maximum differences in total emissivity along the path lengths for the four working conditions with a molar fraction increase from 1 to 2 are 0.088 1, 0.100 4, 0.088 9, and 0.100 6, respectively. For a higher temperature or lower pressure, the effect of molar fraction on the total emissivity is smaller for shorter path lengths but greater for longer ones. The maximum relative error of the improved WSGG model for the total emissivity of flue gas under different working conditions is 3.67%. It is a significant reduction in the error compared to that of the existing WSGG model. Therefore, the improved WSGG model is more accurate for air combustion atmosphere and sub-atmospheric pressure. |
first_indexed | 2024-04-24T15:31:32Z |
format | Article |
id | doaj.art-e7047c9450b9454197c92f9dc0775d70 |
institution | Directory Open Access Journal |
issn | 0253-9993 |
language | zho |
last_indexed | 2024-04-24T15:31:32Z |
publishDate | 2024-03-01 |
publisher | Editorial Office of Journal of China Coal Society |
record_format | Article |
series | Meitan xuebao |
spelling | doaj.art-e7047c9450b9454197c92f9dc0775d702024-04-02T04:00:38ZzhoEditorial Office of Journal of China Coal SocietyMeitan xuebao0253-99932024-03-014921025103610.13225/j.cnki.jccs.ZZ23.1000ZZ23-1000Radiative properties of flue gas under high-altitude sub-atmospheric pressureDefu CHE0Qiaopeng YAO1Jin WANG2Lingxiao DONG3Jiming YU4Yaodong DA5Lei DENG6State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaState Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaState Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaState Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaChina Special Equipment Inspection and Research Institute, Beijing 100029, ChinaState Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaState Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaThe special geography of the plateau area leads to a series of problems in boiler operation. In this study, the absorption coefficients and total emissivity of flue gas were determined under different air pressures during air combustion using the Line-By-Line (LBL) method based on the HITEMP2010 database (High-temperature molecular spectroscopic database). The effects of pressure, temperature, and molar fraction (H2O and CO2) on the radiative properties of flue gas were analyzed. An improved Weighted-Sum-of-Gray-Gases (WSGG) correlation, which relates the absorption coefficients to temperature and total pressure, was proposed. The results show that the reduced total pressure diminishes the total emissivity of flue gas. The maximum differences in total emissivity along the path lengths for the four working conditions with a pressure drop from 0.101 325 to 0.061 655 are 0.093 4, 0.084 5, 0.091 1, and 0.084 3, respectively. For a larger molar fraction, the effect of pressure on the total emissivity is greater for shorter path lengths but not for longer ones. Similarly, the higher temperature would reduce the total emissivity of flue gas. The maximum differences in total emissivity along the path lengths for the four working conditions with a temperature increase from 1 000 K to 2 500 K are 0.273 6, 0.270 5, 0.251 5, and 0.250 5, respectively. For a larger molar fraction, temperature has a greater effect on the total emissivity for shorter path lengths but not for longer ones. Furthermore, increasing the molar fraction enhances the total emissivity of flue gas. The maximum differences in total emissivity along the path lengths for the four working conditions with a molar fraction increase from 1 to 2 are 0.088 1, 0.100 4, 0.088 9, and 0.100 6, respectively. For a higher temperature or lower pressure, the effect of molar fraction on the total emissivity is smaller for shorter path lengths but greater for longer ones. The maximum relative error of the improved WSGG model for the total emissivity of flue gas under different working conditions is 3.67%. It is a significant reduction in the error compared to that of the existing WSGG model. Therefore, the improved WSGG model is more accurate for air combustion atmosphere and sub-atmospheric pressure.http://www.mtxb.com.cn/article/doi/10.13225/j.cnki.jccs.ZZ23.1000flue gas radiationhigh-altitudesub-atmospheric pressureboilertotal emissivity |
spellingShingle | Defu CHE Qiaopeng YAO Jin WANG Lingxiao DONG Jiming YU Yaodong DA Lei DENG Radiative properties of flue gas under high-altitude sub-atmospheric pressure Meitan xuebao flue gas radiation high-altitude sub-atmospheric pressure boiler total emissivity |
title | Radiative properties of flue gas under high-altitude sub-atmospheric pressure |
title_full | Radiative properties of flue gas under high-altitude sub-atmospheric pressure |
title_fullStr | Radiative properties of flue gas under high-altitude sub-atmospheric pressure |
title_full_unstemmed | Radiative properties of flue gas under high-altitude sub-atmospheric pressure |
title_short | Radiative properties of flue gas under high-altitude sub-atmospheric pressure |
title_sort | radiative properties of flue gas under high altitude sub atmospheric pressure |
topic | flue gas radiation high-altitude sub-atmospheric pressure boiler total emissivity |
url | http://www.mtxb.com.cn/article/doi/10.13225/j.cnki.jccs.ZZ23.1000 |
work_keys_str_mv | AT defuche radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure AT qiaopengyao radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure AT jinwang radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure AT lingxiaodong radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure AT jimingyu radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure AT yaodongda radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure AT leideng radiativepropertiesoffluegasunderhighaltitudesubatmosphericpressure |