Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO
Abstract Background The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to e...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-04-01
|
Series: | Radiation Oncology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13014-019-1269-1 |
_version_ | 1818963105374273536 |
---|---|
author | Miguel Rodriguez Lorenzo Brualla |
author_facet | Miguel Rodriguez Lorenzo Brualla |
author_sort | Miguel Rodriguez |
collection | DOAJ |
description | Abstract Background The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to evaluate the deviations introduced in the dose distributions by errors in the positioning of the leaves of the multileaf collimator recorded in the dynalog files during patient treatment. Methods The reconstruction of treatment plans from Varian’s dynalog files was implemented in the PRIMO system. Dose distributions were estimated for volumetric-modulated arc therapy clinical cases of prostate and head&neck using the PRIMO fast Monte Carlo engine DPM. Accuracy of the implemented reconstruction methods was evaluated by comparing dose distributions obtained from the simulations of the plans imported from the treatment planning system with those obtained from the simulations of the plans reconstructed from the expected leaves positions recorded in the dynalog files. The impact on the dose of errors in the positions of the leaves was evaluated by comparing dose distributions estimated for plans reconstructed from expected leaves positions with dose distributions estimated from actual leaves positions. Gamma pass rate (GPR), a hereby introduced quantity named percentage of agreement (PA) and the percentage of voxels with a given systematic difference (α/Δ) were the quantities used for the comparisons. Errors were introduced in leaves positions in order to study the sensitivity of these quantities. Results A good agreement of the dose distributions obtained from the plan imported from the TPS and from the plan reconstructed from expected leaves positions was obtained. Not a significantly better agreement was obtained for an imported plan with an increased number of control points such as to approximately match the number of records in the dynalogs. When introduced errors were predominantly in one direction, the methods employed in this work were sensitive to dynalogs with root-mean-square errors (RMS) ≥0.2 mm. Nevertheless, when errors were in both directions, only RMS >1.2 mm produced detectable deviations in the dose. The PA and the α/Δ showed more sensitive to errors in the leaves positions than the GPR. Conclusions Methods to verify the accuracy of the radiotherapy treatment from the information recorded in the Varian’s dynalog files were implemented and verified in this work for the PRIMO system. Tolerance limits could be established based on the values of PA and α/Δ. GPR 3,3 is not recommended as a solely evaluator of deviations introduced in the dose by errors captured in the dynalog files. |
first_indexed | 2024-12-20T12:39:56Z |
format | Article |
id | doaj.art-e707dffab53449689111715680532692 |
institution | Directory Open Access Journal |
issn | 1748-717X |
language | English |
last_indexed | 2024-12-20T12:39:56Z |
publishDate | 2019-04-01 |
publisher | BMC |
record_format | Article |
series | Radiation Oncology |
spelling | doaj.art-e707dffab534496891117156805326922022-12-21T19:40:30ZengBMCRadiation Oncology1748-717X2019-04-011411710.1186/s13014-019-1269-1Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMOMiguel Rodriguez0Lorenzo Brualla1Centro Médico PaitillaWest German Proton Therapy Centre (WPE)Abstract Background The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to evaluate the deviations introduced in the dose distributions by errors in the positioning of the leaves of the multileaf collimator recorded in the dynalog files during patient treatment. Methods The reconstruction of treatment plans from Varian’s dynalog files was implemented in the PRIMO system. Dose distributions were estimated for volumetric-modulated arc therapy clinical cases of prostate and head&neck using the PRIMO fast Monte Carlo engine DPM. Accuracy of the implemented reconstruction methods was evaluated by comparing dose distributions obtained from the simulations of the plans imported from the treatment planning system with those obtained from the simulations of the plans reconstructed from the expected leaves positions recorded in the dynalog files. The impact on the dose of errors in the positions of the leaves was evaluated by comparing dose distributions estimated for plans reconstructed from expected leaves positions with dose distributions estimated from actual leaves positions. Gamma pass rate (GPR), a hereby introduced quantity named percentage of agreement (PA) and the percentage of voxels with a given systematic difference (α/Δ) were the quantities used for the comparisons. Errors were introduced in leaves positions in order to study the sensitivity of these quantities. Results A good agreement of the dose distributions obtained from the plan imported from the TPS and from the plan reconstructed from expected leaves positions was obtained. Not a significantly better agreement was obtained for an imported plan with an increased number of control points such as to approximately match the number of records in the dynalogs. When introduced errors were predominantly in one direction, the methods employed in this work were sensitive to dynalogs with root-mean-square errors (RMS) ≥0.2 mm. Nevertheless, when errors were in both directions, only RMS >1.2 mm produced detectable deviations in the dose. The PA and the α/Δ showed more sensitive to errors in the leaves positions than the GPR. Conclusions Methods to verify the accuracy of the radiotherapy treatment from the information recorded in the Varian’s dynalog files were implemented and verified in this work for the PRIMO system. Tolerance limits could be established based on the values of PA and α/Δ. GPR 3,3 is not recommended as a solely evaluator of deviations introduced in the dose by errors captured in the dynalog files.http://link.springer.com/article/10.1186/s13014-019-1269-1Monte CarloDVHDynalog |
spellingShingle | Miguel Rodriguez Lorenzo Brualla Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO Radiation Oncology Monte Carlo DVH Dynalog |
title | Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO |
title_full | Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO |
title_fullStr | Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO |
title_full_unstemmed | Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO |
title_short | Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO |
title_sort | treatment verification using varian s dynalog files in the monte carlo system primo |
topic | Monte Carlo DVH Dynalog |
url | http://link.springer.com/article/10.1186/s13014-019-1269-1 |
work_keys_str_mv | AT miguelrodriguez treatmentverificationusingvariansdynalogfilesinthemontecarlosystemprimo AT lorenzobrualla treatmentverificationusingvariansdynalogfilesinthemontecarlosystemprimo |