Systems pharmacology based approach to investigate the in-vivo therapeutic efficacy of Albizia lebbeck (L.) in experimental model of Parkinson’s disease

Abstract Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta and clinically manifested mainly with motor dysfunctions. Plants are rich source of medicinally important bioactive compounds and i...

Full description

Bibliographic Details
Main Authors: Uzma Saleem, Zohaib Raza, Fareeha Anwar, Zunera Chaudary, Bashir Ahmad
Format: Article
Language:English
Published: BMC 2019-12-01
Series:BMC Complementary and Alternative Medicine
Subjects:
Online Access:https://doi.org/10.1186/s12906-019-2772-5
Description
Summary:Abstract Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta and clinically manifested mainly with motor dysfunctions. Plants are rich source of medicinally important bioactive compounds and inhabitants of underdeveloped countries used plants for treatment of various ailments. Albizia lebbeck has been reported to possess antioxidant and neuroprotective properties that suggest the evaluation of its traditional therapeutic potential in neurodegenerative diseases. The aim of present study was to validate the traditional use of Albizia lebbeck (L.) and delineate its mechanism of action in PD. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD. Methods The haloperidol-induced catalepsy was adopted as experimental model of PD for in-vivo studies in wistar albino rats. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD. Results In-vivo studies revealed that Albizia lebbeck improved the motor functions and endurance as demonstrated in behavioral studies which were further supported by the rescue of endogenous antioxidant defense and reversal of ultrastructural damages in histological studies. System pharmacology approach identified 25 drug like compounds interacting with 132 targets in a bipartite graph that revealed the synergistic mechanism of action at system level. Kaemferol, phytosterol and okanin were found to be the important compounds nodes with prominent target nodes of TDP1 and MAPT. Conclusion The therapeutic efficiency of Albizia lebbeck in PD was effectively delineated in our experimental and systems pharmacology approach. Moreover, this approach further facilitates the drug discovery from Albizia lebbeck for PD.
ISSN:1472-6882