Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure

This paper investigates reliable estimation problem for Markovian jump neural networks (MJNNs) with reaction-diffusion terms and asynchronous sensor failure. Considering the communication channel used in practical application, the sensor saturation phenomenon is considered in this paper. Moreover, t...

Full description

Bibliographic Details
Main Authors: Xiaona Song, Mi Wang, Shuai Song, Ines Tejado Balsera
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8452885/
_version_ 1818927838714134528
author Xiaona Song
Mi Wang
Shuai Song
Ines Tejado Balsera
author_facet Xiaona Song
Mi Wang
Shuai Song
Ines Tejado Balsera
author_sort Xiaona Song
collection DOAJ
description This paper investigates reliable estimation problem for Markovian jump neural networks (MJNNs) with reaction-diffusion terms and asynchronous sensor failure. Considering the communication channel used in practical application, the sensor saturation phenomenon is considered in this paper. Moreover, the stochastic occurring sensor fault phenomenon is noticed in the analysis and is described by another Markov chain, which depends on the network modes. The conditions that ensure the MJNNs stochastically stable with L<sub>2</sub> - L<sub>&#x221E;</sub> performance are given in terms of linear matrix inequalities (LMIs). Based on the obtained conditions, a novel mode-dependent estimator is developed, which can be solved by using LMI toolbox. Finally, an example is provided to illustrate the effectiveness of the proposed method.
first_indexed 2024-12-20T03:19:23Z
format Article
id doaj.art-e711417279b1430d9b5c0f535e1dc45b
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-20T03:19:23Z
publishDate 2018-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-e711417279b1430d9b5c0f535e1dc45b2022-12-21T19:55:16ZengIEEEIEEE Access2169-35362018-01-016500665007610.1109/ACCESS.2018.28680608452885Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous FailureXiaona Song0https://orcid.org/0000-0001-8476-5112Mi Wang1Shuai Song2https://orcid.org/0000-0002-4780-0967Ines Tejado Balsera3School of Information Engineering, Henan University of Science and Technology, Luoyang, ChinaSchool of Information Engineering, Henan University of Science and Technology, Luoyang, ChinaSchool of Automation, Nanjing University of Science and Technology, Nanjing, ChinaInd. Eng. Sch., Univ. of Extremadura, Badajoz, SpainThis paper investigates reliable estimation problem for Markovian jump neural networks (MJNNs) with reaction-diffusion terms and asynchronous sensor failure. Considering the communication channel used in practical application, the sensor saturation phenomenon is considered in this paper. Moreover, the stochastic occurring sensor fault phenomenon is noticed in the analysis and is described by another Markov chain, which depends on the network modes. The conditions that ensure the MJNNs stochastically stable with L<sub>2</sub> - L<sub>&#x221E;</sub> performance are given in terms of linear matrix inequalities (LMIs). Based on the obtained conditions, a novel mode-dependent estimator is developed, which can be solved by using LMI toolbox. Finally, an example is provided to illustrate the effectiveness of the proposed method.https://ieeexplore.ieee.org/document/8452885/Asynchronous sensor failurereaction-diffusion terms<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₂ – <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>∞ performanceMarkovian jumpneural networksreliable estimation
spellingShingle Xiaona Song
Mi Wang
Shuai Song
Ines Tejado Balsera
Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure
IEEE Access
Asynchronous sensor failure
reaction-diffusion terms
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₂ – <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>∞ performance
Markovian jump
neural networks
reliable estimation
title Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure
title_full Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure
title_fullStr Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure
title_full_unstemmed Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure
title_short Reliable <inline-formula> <tex-math notation="LaTeX">${L_{2}} - {L_{\infty} }$ </tex-math></inline-formula> State Estimation for Markovian Jump Reaction-Diffusion Neural Networks With Sensor Saturation and Asynchronous Failure
title_sort reliable inline formula tex math notation latex l 2 l infty tex math inline formula state estimation for markovian jump reaction diffusion neural networks with sensor saturation and asynchronous failure
topic Asynchronous sensor failure
reaction-diffusion terms
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>₂ – <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L</italic>∞ performance
Markovian jump
neural networks
reliable estimation
url https://ieeexplore.ieee.org/document/8452885/
work_keys_str_mv AT xiaonasong reliableinlineformulatexmathnotationlatexl2linftytexmathinlineformulastateestimationformarkovianjumpreactiondiffusionneuralnetworkswithsensorsaturationandasynchronousfailure
AT miwang reliableinlineformulatexmathnotationlatexl2linftytexmathinlineformulastateestimationformarkovianjumpreactiondiffusionneuralnetworkswithsensorsaturationandasynchronousfailure
AT shuaisong reliableinlineformulatexmathnotationlatexl2linftytexmathinlineformulastateestimationformarkovianjumpreactiondiffusionneuralnetworkswithsensorsaturationandasynchronousfailure
AT inestejadobalsera reliableinlineformulatexmathnotationlatexl2linftytexmathinlineformulastateestimationformarkovianjumpreactiondiffusionneuralnetworkswithsensorsaturationandasynchronousfailure