On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form

Maximum Distance Separable (MDS) matrices are used as the main component of diffusion layers in block ciphers. MDS matrices have the optimal diffusion properties and the maximum branch number, which is a criterion to measure diffusion rate and security against linear and differential cryptanalysis....

Full description

Bibliographic Details
Main Authors: Meltem Kurt Pehlivanoglu, Fatma Buyuksaracoglu Sakalli, Sedat Akleylek, Muharrem Tolga Sakalli
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10086484/
_version_ 1827963797539651584
author Meltem Kurt Pehlivanoglu
Fatma Buyuksaracoglu Sakalli
Sedat Akleylek
Muharrem Tolga Sakalli
author_facet Meltem Kurt Pehlivanoglu
Fatma Buyuksaracoglu Sakalli
Sedat Akleylek
Muharrem Tolga Sakalli
author_sort Meltem Kurt Pehlivanoglu
collection DOAJ
description Maximum Distance Separable (MDS) matrices are used as the main component of diffusion layers in block ciphers. MDS matrices have the optimal diffusion properties and the maximum branch number, which is a criterion to measure diffusion rate and security against linear and differential cryptanalysis. However, it is a challenging problem to construct hardware-friendly MDS matrices with optimal or close to optimal circuits, especially for involutory ones. In this paper, we consider the generalized subfield construction method from the global optimization perspective and then give new <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> involutory MDS matrices over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2^{3}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2^{5}}$ </tex-math></inline-formula>. After that, we present 1,176 (<inline-formula> <tex-math notation="LaTeX">$=28\times 42$ </tex-math></inline-formula>) new <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> involutory and MDS diffusion matrices by 33 XORs and depth 3. This new record also improves the previously best-known cost of 38 XOR gates.
first_indexed 2024-04-09T17:04:46Z
format Article
id doaj.art-e713ab78569e45f0ac9a6730fcdc6d13
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-09T17:04:46Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-e713ab78569e45f0ac9a6730fcdc6d132023-04-20T23:00:17ZengIEEEIEEE Access2169-35362023-01-0111327083271510.1109/ACCESS.2023.326292410086484On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield FormMeltem Kurt Pehlivanoglu0https://orcid.org/0000-0002-7581-9390Fatma Buyuksaracoglu Sakalli1https://orcid.org/0000-0002-6100-6655Sedat Akleylek2https://orcid.org/0000-0001-7005-6489Muharrem Tolga Sakalli3https://orcid.org/0000-0002-6322-0989Department of Computer Engineering, Faculty of Engineering, Kocaeli University, Kocaeli, TurkeyDepartment of Computer Engineering, Faculty of Engineering, Trakya University, Edirne, TurkeyCyber Security and Information Technologies Research and Development Center, Ondokuz Mayis University, Samsun, TurkeyDepartment of Computer Engineering, Faculty of Engineering, Trakya University, Edirne, TurkeyMaximum Distance Separable (MDS) matrices are used as the main component of diffusion layers in block ciphers. MDS matrices have the optimal diffusion properties and the maximum branch number, which is a criterion to measure diffusion rate and security against linear and differential cryptanalysis. However, it is a challenging problem to construct hardware-friendly MDS matrices with optimal or close to optimal circuits, especially for involutory ones. In this paper, we consider the generalized subfield construction method from the global optimization perspective and then give new <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> involutory MDS matrices over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2^{3}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2^{5}}$ </tex-math></inline-formula>. After that, we present 1,176 (<inline-formula> <tex-math notation="LaTeX">$=28\times 42$ </tex-math></inline-formula>) new <inline-formula> <tex-math notation="LaTeX">$4 \times 4$ </tex-math></inline-formula> involutory and MDS diffusion matrices by 33 XORs and depth 3. This new record also improves the previously best-known cost of 38 XOR gates.https://ieeexplore.ieee.org/document/10086484/Diffusion layersgeneralized subfield constructionglobal optimizationlightweight cryptographyMDS matrices
spellingShingle Meltem Kurt Pehlivanoglu
Fatma Buyuksaracoglu Sakalli
Sedat Akleylek
Muharrem Tolga Sakalli
On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form
IEEE Access
Diffusion layers
generalized subfield construction
global optimization
lightweight cryptography
MDS matrices
title On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form
title_full On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form
title_fullStr On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form
title_full_unstemmed On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form
title_short On the Construction of New Lightweight Involutory MDS Matrices in Generalized Subfield Form
title_sort on the construction of new lightweight involutory mds matrices in generalized subfield form
topic Diffusion layers
generalized subfield construction
global optimization
lightweight cryptography
MDS matrices
url https://ieeexplore.ieee.org/document/10086484/
work_keys_str_mv AT meltemkurtpehlivanoglu ontheconstructionofnewlightweightinvolutorymdsmatricesingeneralizedsubfieldform
AT fatmabuyuksaracoglusakalli ontheconstructionofnewlightweightinvolutorymdsmatricesingeneralizedsubfieldform
AT sedatakleylek ontheconstructionofnewlightweightinvolutorymdsmatricesingeneralizedsubfieldform
AT muharremtolgasakalli ontheconstructionofnewlightweightinvolutorymdsmatricesingeneralizedsubfieldform