Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins

“Architecture Fully Fashioned” is about lightweight design and new textile based building skins. Fully fashioned refers to a textile production technology wherein all parts of a piece of cloth are produced in one integrated production process, ready to wear the moment they leave the machine. Fully f...

Full description

Bibliographic Details
Main Authors: Prof. Dipl.-Ing Claudia Lüling, Dipl.-Ing. Iva Richter
Format: Article
Language:English
Published: Stichting OpenAccess 2017-01-01
Series:Journal of Facade Design and Engineering
Subjects:
Online Access:https://jfde.eu/index.php/jfde/article/view/65
_version_ 1797870207844220928
author Prof. Dipl.-Ing Claudia Lüling
Dipl.-Ing. Iva Richter
author_facet Prof. Dipl.-Ing Claudia Lüling
Dipl.-Ing. Iva Richter
author_sort Prof. Dipl.-Ing Claudia Lüling
collection DOAJ
description “Architecture Fully Fashioned” is about lightweight design and new textile based building skins. Fully fashioned refers to a textile production technology wherein all parts of a piece of cloth are produced in one integrated production process, ready to wear the moment they leave the machine. Fully fashioned powerskin in an architectural sense implies a light, highly prefabricated textile envelope with minimum needs of installation work on the building site. To develop these new textile powerskins, experimental student works and applied research projects at Frankfurt University of Applied Science investigate the potential of the combination of textile technologies with foaming technologies. This paper focuses on so called spacer fabrics and a research project called 3dTEX and founded by Zukunf Bau, where wall elements from foamed spacer fabrics presently are under development. The aim of the paper is to present 3dTEX within the context of the accompanying experimental student design works and to show the so far achieved results for a prefabricated, lightweight, self supporting and highly insulated foamed textile skin, with reduced needs of installation work on the building site. This has been achieved by using the spacer fabric as lost formwork and using 3d-textile technologies, so as woven or warp-knitted spacer fabrics, in order to receive complex geometrical sandwich-like textiles. Together with the foam they become FabricFoam©. The new selfsupporting building elements not only offer possibilities for complex architectonical geometries including loadbearing structures, but also a wide range of surface designs in terms of structures, colours and additional functionalities. The focus of 3dTEX is on the development of appropriate textile geometries for one- ore two-layer textile elements, depending on the choosen textile technologies. Foamed, they become lightweight, insulated elements, where the two layer textile can even be transformed into a ready-made, rear-ventilated, insulated wall element made from gradient fibre and foam material, able to absorb tensile and compressive forces at the same time. The challenge for 3dTEX is to close the knowledge gap about what kind of textile technology can produce the envisioned textile geometry with which kind of fibre material. Further, 3dTEX research is about the appropriate, possibly in-situ, foaming technology and foam material, so that fibre and foam materials match as an aesthetic architectural element and in terms of mechanical and building physics as well as in terms of grey energy and recycling aspects. 
first_indexed 2024-04-10T00:23:43Z
format Article
id doaj.art-e71ca2a013dc4eb0959ead6f2a1cb66d
institution Directory Open Access Journal
issn 2213-302X
2213-3038
language English
last_indexed 2024-04-10T00:23:43Z
publishDate 2017-01-01
publisher Stichting OpenAccess
record_format Article
series Journal of Facade Design and Engineering
spelling doaj.art-e71ca2a013dc4eb0959ead6f2a1cb66d2023-03-15T13:53:26ZengStichting OpenAccessJournal of Facade Design and Engineering2213-302X2213-30382017-01-015110.7480/jfde.2017.1.152665Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skinsProf. Dipl.-Ing Claudia Lüling0Dipl.-Ing. Iva Richter1Frankfurt University of Applied SciencesFrankfurt University of Applied Sciences“Architecture Fully Fashioned” is about lightweight design and new textile based building skins. Fully fashioned refers to a textile production technology wherein all parts of a piece of cloth are produced in one integrated production process, ready to wear the moment they leave the machine. Fully fashioned powerskin in an architectural sense implies a light, highly prefabricated textile envelope with minimum needs of installation work on the building site. To develop these new textile powerskins, experimental student works and applied research projects at Frankfurt University of Applied Science investigate the potential of the combination of textile technologies with foaming technologies. This paper focuses on so called spacer fabrics and a research project called 3dTEX and founded by Zukunf Bau, where wall elements from foamed spacer fabrics presently are under development. The aim of the paper is to present 3dTEX within the context of the accompanying experimental student design works and to show the so far achieved results for a prefabricated, lightweight, self supporting and highly insulated foamed textile skin, with reduced needs of installation work on the building site. This has been achieved by using the spacer fabric as lost formwork and using 3d-textile technologies, so as woven or warp-knitted spacer fabrics, in order to receive complex geometrical sandwich-like textiles. Together with the foam they become FabricFoam©. The new selfsupporting building elements not only offer possibilities for complex architectonical geometries including loadbearing structures, but also a wide range of surface designs in terms of structures, colours and additional functionalities. The focus of 3dTEX is on the development of appropriate textile geometries for one- ore two-layer textile elements, depending on the choosen textile technologies. Foamed, they become lightweight, insulated elements, where the two layer textile can even be transformed into a ready-made, rear-ventilated, insulated wall element made from gradient fibre and foam material, able to absorb tensile and compressive forces at the same time. The challenge for 3dTEX is to close the knowledge gap about what kind of textile technology can produce the envisioned textile geometry with which kind of fibre material. Further, 3dTEX research is about the appropriate, possibly in-situ, foaming technology and foam material, so that fibre and foam materials match as an aesthetic architectural element and in terms of mechanical and building physics as well as in terms of grey energy and recycling aspects.  https://jfde.eu/index.php/jfde/article/view/65lightweight designprefabricated textile envelopefoamed spacer fabricsFabricFoam
spellingShingle Prof. Dipl.-Ing Claudia Lüling
Dipl.-Ing. Iva Richter
Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins
Journal of Facade Design and Engineering
lightweight design
prefabricated textile envelope
foamed spacer fabrics
FabricFoam
title Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins
title_full Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins
title_fullStr Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins
title_full_unstemmed Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins
title_short Architecture Fully Fashioned - Exploration of foamed spacer fabrics for textile based building skins
title_sort architecture fully fashioned exploration of foamed spacer fabrics for textile based building skins
topic lightweight design
prefabricated textile envelope
foamed spacer fabrics
FabricFoam
url https://jfde.eu/index.php/jfde/article/view/65
work_keys_str_mv AT profdiplingclaudialuling architecturefullyfashionedexplorationoffoamedspacerfabricsfortextilebasedbuildingskins
AT diplingivarichter architecturefullyfashionedexplorationoffoamedspacerfabricsfortextilebasedbuildingskins