Partition-Based Point Cloud Completion Network with Density Refinement

In this paper, we propose a novel method for point cloud complementation called PADPNet. Our approach uses a combination of global and local information to infer missing elements in the point cloud. We achieve this by dividing the input point cloud into uniform local regions, called perceptual field...

Full description

Bibliographic Details
Main Authors: Jianxin Li, Guannan Si, Xinyu Liang, Zhaoliang An, Pengxin Tian, Fengyu Zhou
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/7/1018
Description
Summary:In this paper, we propose a novel method for point cloud complementation called PADPNet. Our approach uses a combination of global and local information to infer missing elements in the point cloud. We achieve this by dividing the input point cloud into uniform local regions, called perceptual fields, which are abstractly understood as special convolution kernels. The set of point clouds in each local region is represented as a feature vector and transformed into N uniform perceptual fields as the input to our transformer model. We also designed a geometric density-aware block to better exploit the inductive bias of the point cloud’s 3D geometric structure. Our method preserves sharp edges and detailed structures that are often lost in voxel-based or point-based approaches. Experimental results demonstrate that our approach outperforms other methods in reducing the ambiguity of output results. Our proposed method has important applications in 3D computer vision and can efficiently recover complete 3D object shapes from missing point clouds.
ISSN:1099-4300