Summary: | Ischemic stroke is one of the leading causes of disability and death. To achieve timely assessments, a computer-aided diagnosis (CAD) system was proposed to perform early recognition of hyperacute ischemic stroke based on non-contrast computed tomography (NCCT). In total, 26 patients with hyperacute ischemic stroke (with onset <6 h previous) and 56 normal controls composed the image database. For each NCCT slice, textural features were extracted from Ranklet-transformed images which had enhanced local contrast. Textural differences between the two sides of an image were calculated and combined in a machine learning classifier to detect stroke areas. The proposed CAD system using Ranklet features achieved significantly higher accuracy (81% vs. 71%), specificity (90% vs. 79%), and area under the curve (Az) (0.81 vs. 0.73) than conventional textural features. Diagnostic suggestions provided by the CAD system are fast and promising and could be useful in the pipeline of hyperacute ischemic stroke assessments.
|