Shrinking of operators in quantum error correction and AdS/CFT
Abstract We first show that a class of operators acting on a given bipartite pure state on ℋ A ⊗ ℋ B can shrink its supports on ℋ A ⊗ ℋ B to only ℋ A or ℋ B while keeping its mappings. Using this result, we show how to systematically construct the decoders of the quantum error-correcting codes again...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-12-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP12(2019)128 |
Summary: | Abstract We first show that a class of operators acting on a given bipartite pure state on ℋ A ⊗ ℋ B can shrink its supports on ℋ A ⊗ ℋ B to only ℋ A or ℋ B while keeping its mappings. Using this result, we show how to systematically construct the decoders of the quantum error-correcting codes against erasure errors. The implications of the results for the operator dictionary in the AdS/CFT correspondence are also discussed. The “sub- algebra code with complementary recovery” introduced in the recent work of Harlow is a quantum error-correcting code that shares many common features with the AdS/CFT correspondence. We consider it under the restriction of the bulk (logical) Hilbert space to a subspace that generally has no tensor factorization into subsystems. In this code, the central operators of the reconstructed algebra on the boundary subregion can emerge as a consequence of the restriction of the bulk Hilbert space. Finally, we show a theorem in this code which implies the validity of not only the entanglement wedge reconstruction but also its converse statement with the central operators. |
---|---|
ISSN: | 1029-8479 |