Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner

Abstract Background Drought stress negatively affects plant growth and productivity. Plants sense soil drought at the root level but the underlying mechanisms remain unclear. At the cell level, we aim to reveal the short-term root perception of drought stress through membrane dynamics. Results In ou...

Full description

Bibliographic Details
Main Authors: Mégane Couchoud, Christophe Der, Sylvie Girodet, Vanessa Vernoud, Marion Prudent, Nathalie Leborgne-Castel
Format: Article
Language:English
Published: BMC 2019-05-01
Series:BMC Plant Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12870-019-1814-y
Description
Summary:Abstract Background Drought stress negatively affects plant growth and productivity. Plants sense soil drought at the root level but the underlying mechanisms remain unclear. At the cell level, we aim to reveal the short-term root perception of drought stress through membrane dynamics. Results In our study, 15 Medicago truncatula accessions were exposed to a polyethylene glycol (PEG)-induced drought stress, leading to contrasted ecophysiological responses, in particular related to root architecture plasticity. In the reference accession Jemalong A17, identified as drought susceptible, we analyzed lateral roots by imaging of membrane-localized fluorescent probes using confocal microscopy. We found that PEG stimulated endocytosis especially in cells belonging to the growth differentiation zone (GDZ). The mapping of membrane lipid order in cells along the root apex showed that membranes of root cap cells were more ordered than those of more differentiated cells. Moreover, PEG triggered a significant increase in membrane lipid order of rhizodermal cells from the GDZ. We initiated the membrane analysis in the drought resistant accession HM298, which did not reveal such membrane modifications in response to PEG. Conclusions Our data demonstrated that the plasma membranes of root cells from a susceptible genotype perceived drought stress by modulating their physical state both via a stimulation of endocytosis and a modification of the degree of lipid order, which could be proposed as mechanisms required for signal transduction.
ISSN:1471-2229