Fault Detection and Classification in Ring Power System With DG Penetration Using Hybrid CNN-LSTM
A modern electric power system integrated with advanced technologies such as sensors and smart meters is referred to as a “smart grids”, aimed at enhancing electrical power delivery efficiency and reliability. However, fault location and prediction can become challenging when d...
Päätekijät: | Ahmed Sami Alhanaf, Murtaza Farsadi, Hasan Huseyin Balik |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2024-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/10508728/ |
Samankaltaisia teoksia
-
Intelligent Fault Detection and Classification Schemes for Smart Grids Based on Deep Neural Networks
Tekijä: Ahmed Sami Alhanaf, et al.
Julkaistu: (2023-11-01) -
Bearing fault diagnosis with parallel CNN and LSTM
Tekijä: Guanghua Fu, et al.
Julkaistu: (2024-01-01) -
Research on Wind Turbine Fault Detection Based on CNN-LSTM
Tekijä: Lin Qi, et al.
Julkaistu: (2024-09-01) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
Tekijä: Yaseen Ahmed Mohammed Alsumaidaee, et al.
Julkaistu: (2023-03-01) -
Open-Circuit Fault Detection and Classification of Modular Multilevel Converters in High Voltage Direct Current Systems (MMC-HVDC) with Long Short-Term Memory (LSTM) Method
Tekijä: Qinghua Wang, et al.
Julkaistu: (2021-06-01)