Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter

The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In thi...

Full description

Bibliographic Details
Main Authors: Mulugeta Weldezgina Asres, Christian Walter Omlin, Long Wang, David Yu, Pavel Parygin, Jay Dittmann, Georgia Karapostoli, Markus Seidel, Rosamaria Venditti, Luka Lambrecht, Emanuele Usai, Muhammad Ahmad, Javier Fernandez Menendez, Kaori Maeshima, the CMS-HCAL Collaboration
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/24/9679
_version_ 1797379459135832064
author Mulugeta Weldezgina Asres
Christian Walter Omlin
Long Wang
David Yu
Pavel Parygin
Jay Dittmann
Georgia Karapostoli
Markus Seidel
Rosamaria Venditti
Luka Lambrecht
Emanuele Usai
Muhammad Ahmad
Javier Fernandez Menendez
Kaori Maeshima
the CMS-HCAL Collaboration
author_facet Mulugeta Weldezgina Asres
Christian Walter Omlin
Long Wang
David Yu
Pavel Parygin
Jay Dittmann
Georgia Karapostoli
Markus Seidel
Rosamaria Venditti
Luka Lambrecht
Emanuele Usai
Muhammad Ahmad
Javier Fernandez Menendez
Kaori Maeshima
the CMS-HCAL Collaboration
author_sort Mulugeta Weldezgina Asres
collection DOAJ
description The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.
first_indexed 2024-03-08T20:23:33Z
format Article
id doaj.art-e76afd8526164a548b0af49997b91372
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-08T20:23:33Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-e76afd8526164a548b0af49997b913722023-12-22T14:40:12ZengMDPI AGSensors1424-82202023-12-012324967910.3390/s23249679Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron CalorimeterMulugeta Weldezgina Asres0Christian Walter Omlin1Long Wang2David Yu3Pavel Parygin4Jay Dittmann5Georgia Karapostoli6Markus Seidel7Rosamaria Venditti8Luka Lambrecht9Emanuele Usai10Muhammad Ahmad11Javier Fernandez Menendez12Kaori Maeshima13the CMS-HCAL CollaborationCentre for Artificial Intelligence Research, Department of Information and Communication Technology, University of Agder, 4879 Grimstad, NorwayCentre for Artificial Intelligence Research, Department of Information and Communication Technology, University of Agder, 4879 Grimstad, NorwayDepartment of Physics, University of Maryland, College Park, MD 20742, USADepartment of Physics, Brown University, Providence, RI 02912, USADepartment of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USADepartment of Physics, Baylor University, Waco, TX 76706, USADepartment of Physics & Astronomy, University of California, Riverside, CA 92521, USAInstitute of Particle Physics and Accelerator Technologies, Riga Technical University, LV-1048 Rīga, LatviaDepartment of Physics, Bari University, 70121 Bari, ItalyDepartment of Physics and Astronomy, Ghent University, B-9000 Ghent, BelgiumDepartment of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USADepartment of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USAInstituto Universitario de Ciencias y Tecnologías Espaciales de Asturias, University of Oviedo, 33004 Oviedo, SpainFermi National Accelerator Laboratory, Batavia, IL 60510, USAThe Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.https://www.mdpi.com/1424-8220/23/24/9679anomaly detectionmonitoringspatio-temporaldeep learninggraph networksparticle sensors
spellingShingle Mulugeta Weldezgina Asres
Christian Walter Omlin
Long Wang
David Yu
Pavel Parygin
Jay Dittmann
Georgia Karapostoli
Markus Seidel
Rosamaria Venditti
Luka Lambrecht
Emanuele Usai
Muhammad Ahmad
Javier Fernandez Menendez
Kaori Maeshima
the CMS-HCAL Collaboration
Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
Sensors
anomaly detection
monitoring
spatio-temporal
deep learning
graph networks
particle sensors
title Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
title_full Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
title_fullStr Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
title_full_unstemmed Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
title_short Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
title_sort spatio temporal anomaly detection with graph networks for data quality monitoring of the hadron calorimeter
topic anomaly detection
monitoring
spatio-temporal
deep learning
graph networks
particle sensors
url https://www.mdpi.com/1424-8220/23/24/9679
work_keys_str_mv AT mulugetaweldezginaasres spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT christianwalteromlin spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT longwang spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT davidyu spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT pavelparygin spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT jaydittmann spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT georgiakarapostoli spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT markusseidel spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT rosamariavenditti spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT lukalambrecht spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT emanueleusai spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT muhammadahmad spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT javierfernandezmenendez spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT kaorimaeshima spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter
AT thecmshcalcollaboration spatiotemporalanomalydetectionwithgraphnetworksfordataqualitymonitoringofthehadroncalorimeter