Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances

If misregulated, macrophage (Mϕ)–T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects o...

Full description

Bibliographic Details
Main Authors: Anna Ohradanova-Repic, Christian Machacek, Celine Charvet, Franck Lager, Delphine Le Roux, René Platzer, Vladimir Leksa, Goran Mitulovic, Thomas R. Burkard, Gerhard J. Zlabinger, Michael B. Fischer, Vincent Feuillet, Gilles Renault, Stephan Blüml, Miroslav Benko, Miloslav Suchanek, Johannes B. Huppa, Takami Matsuyama, Artur Cavaco-Paulo, Georges Bismuth, Hannes Stockinger
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-04-01
Series:Frontiers in Immunology
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fimmu.2018.00852/full
Description
Summary:If misregulated, macrophage (Mϕ)–T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRβ+CD39+CD73+ Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.
ISSN:1664-3224