Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</...

Full description

Bibliographic Details
Main Author: Jerzy Lukierski
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1309
_version_ 1797522040932007936
author Jerzy Lukierski
author_facet Jerzy Lukierski
author_sort Jerzy Lukierski
collection DOAJ
description We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> quantum inhomogeneous conformal Hopf algebras <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">U</mi><mi>θ</mi></msub><mrow><mo>(</mo><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo></mrow><msup><mi>T</mi><mn>4</mn></msup></mrow></semantics></math></inline-formula>) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">U</mi><mover accent="true"><mi>θ</mi><mo stretchy="false">¯</mo></mover></msub><mrow><mo>(</mo><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo></mrow><msup><mover accent="true"><mi>T</mi><mo stretchy="false">¯</mo></mover><mn>4</mn></msup></mrow></semantics></math></inline-formula>), where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mn>4</mn></msup></semantics></math></inline-formula> describes complex twistor coordinates and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mover accent="true"><mi>T</mi><mo stretchy="false">¯</mo></mover><mn>4</mn></msup></semantics></math></inline-formula> the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Heisenberg-conformal algebra (HCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo><msubsup><mi>H</mi><mo>ℏ</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msubsup></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>H</mi><mo>ℏ</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msubsup><mo>=</mo><msup><mover accent="true"><mi>T</mi><mo stretchy="false">¯</mo></mover><mn>4</mn></msup><msub><mo>⋉</mo><mo>ℏ</mo></msub><msub><mi>T</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula> is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>λ</mi><mi>p</mi></msub></semantics></math></inline-formula>, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>H</mi><mo>ℏ</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msubsup></semantics></math></inline-formula>. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">U</mi><mi>θ</mi></msub><mrow><mo>(</mo><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo><msup><mi>T</mi><mn>4</mn></msup><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula>
first_indexed 2024-03-10T08:21:00Z
format Article
id doaj.art-e7839a8d80564ea3b8f5a9f27eb26a96
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T08:21:00Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-e7839a8d80564ea3b8f5a9f27eb26a962023-11-22T09:59:10ZengMDPI AGSymmetry2073-89942021-07-01138130910.3390/sym13081309Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR AlgebrasJerzy Lukierski0Institute for Theoretical Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-205 Wroclaw, PolandWe construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> quantum inhomogeneous conformal Hopf algebras <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">U</mi><mi>θ</mi></msub><mrow><mo>(</mo><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo></mrow><msup><mi>T</mi><mn>4</mn></msup></mrow></semantics></math></inline-formula>) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">U</mi><mover accent="true"><mi>θ</mi><mo stretchy="false">¯</mo></mover></msub><mrow><mo>(</mo><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo></mrow><msup><mover accent="true"><mi>T</mi><mo stretchy="false">¯</mo></mover><mn>4</mn></msup></mrow></semantics></math></inline-formula>), where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mn>4</mn></msup></semantics></math></inline-formula> describes complex twistor coordinates and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mover accent="true"><mi>T</mi><mo stretchy="false">¯</mo></mover><mn>4</mn></msup></semantics></math></inline-formula> the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Heisenberg-conformal algebra (HCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo><msubsup><mi>H</mi><mo>ℏ</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msubsup></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>H</mi><mo>ℏ</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msubsup><mo>=</mo><msup><mover accent="true"><mi>T</mi><mo stretchy="false">¯</mo></mover><mn>4</mn></msup><msub><mo>⋉</mo><mo>ℏ</mo></msub><msub><mi>T</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula> is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>λ</mi><mi>p</mi></msub></semantics></math></inline-formula>, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>H</mi><mo>ℏ</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msubsup></semantics></math></inline-formula>. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">U</mi><mi>θ</mi></msub><mrow><mo>(</mo><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>⋉</mo><msup><mi>T</mi><mn>4</mn></msup><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula>https://www.mdpi.com/2073-8994/13/8/1309quantum deformationsquantum gravityclassical and quantum twistor geometry
spellingShingle Jerzy Lukierski
Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras
Symmetry
quantum deformations
quantum gravity
classical and quantum twistor geometry
title Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras
title_full Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras
title_fullStr Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras
title_full_unstemmed Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras
title_short Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras
title_sort palatial twistors from quantum inhomogeneous conformal symmetries and twistorial dsr algebras
topic quantum deformations
quantum gravity
classical and quantum twistor geometry
url https://www.mdpi.com/2073-8994/13/8/1309
work_keys_str_mv AT jerzylukierski palatialtwistorsfromquantuminhomogeneousconformalsymmetriesandtwistorialdsralgebras