The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens

Pathogenic microorganisms have been the primary cause of foodborne disease and food poisoning throughout the world for years. The use of natural antimicrobial agents in food coating has been effective in regulating the adverse effects of pathogens in food. Increasing antimicrobial efficacy in these...

Full description

Bibliographic Details
Main Authors: Elif ELİUZ, Nahit Soner BÖREKÇİ, Deniz AYAS
Format: Article
Language:English
Published: Adem Yavuz Sönmez 2019-12-01
Series:Marine Science and Technology Bulletin
Subjects:
Online Access:https://dergipark.org.tr/en/pub/masteb/issue/47844/640614?publisher=ademyavuzsonmez
Description
Summary:Pathogenic microorganisms have been the primary cause of foodborne disease and food poisoning throughout the world for years. The use of natural antimicrobial agents in food coating has been effective in regulating the adverse effects of pathogens in food. Increasing antimicrobial efficacy in these coatings is one of the current issues of the food industry. In the present study, the antimicrobial properties of Enteromorpha sp., which is a marine algae, and gelatin film solution incorporated with Enteromorpha sp. methanol extract have been investigated. The contents of Enteromorpha sp. methanol extract were determined by Gas chromatography–mass spectrometry (GCMS). The most important components in the extract were methyl palmitoleate, neophytadiene, phytol, methyl linolenate and methyl stearate. The minimum inhibitory concentration (MIC; the lowest concentration of test material which results in 99.9% inhibition of growth) of Enteromorpha sp. on Escherichia coli, Staphylococcus aureus and Candida albicans were found to be between 10.79 mg/mL and 26.86 mg/mL by spectrophotometric microdilution technique. The antimicrobial effect of gelatin- Enteromorpha sp. methanolic extract film solution against the same pathogens was determined by disc diffusion method. The inhibition zone of gelatin- Enteromorpha sp. film solution was reported between 0.1 and 5.1 mm against pathogens. After a 24-h incubation, the effectiveness of the film solution was lower (1.3 mm) when compared to the extract on E. coli (5.1 mm). As a result, this study clearly showed that Enteromorpha sp. could be used as antimicrobial food coating agent, especially, in E. coli struggle.
ISSN:2147-9666