Pressure-Induced Modulation of Tin Selenide Properties: A Review

Tin selenide (SnSe) holds great potential for abundant future applications, due to its exceptional properties and distinctive layered structure, which can be modified using a variety of techniques. One of the many tuning techniques is pressure manipulating using the diamond anvil cell (DAC), which i...

Full description

Bibliographic Details
Main Authors: Ziwei Cheng, Jian Zhang, Lin Lin, Zhiwen Zhan, Yibo Ma, Jia Li, Shenglong Yu, Hang Cui
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/24/7971
Description
Summary:Tin selenide (SnSe) holds great potential for abundant future applications, due to its exceptional properties and distinctive layered structure, which can be modified using a variety of techniques. One of the many tuning techniques is pressure manipulating using the diamond anvil cell (DAC), which is a very efficient in situ and reversible approach for modulating the structure and physical properties of SnSe. We briefly summarize the advantages and challenges of experimental study using DAC in this review, then introduce the recent progress and achievements of the pressure-induced structure and performance of SnSe, especially including the influence of pressure on its crystal structure and optical, electronic, and thermoelectric properties. The overall goal of the review is to better understand the mechanics underlying pressure-induced phase transitions and to offer suggestions for properly designing a structural pattern to achieve or enhanced novel properties.
ISSN:1420-3049