Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks

The aim of this paper is to investigate the prediction of maximum story drift of Multi-Degree of Freedom (MDOF) structures subjected to dynamics wind load using Artificial Neural Networks (ANNs) through the combination of several structural and turbulent wind parameters. The maximum story drift of 1...

Full description

Bibliographic Details
Main Authors: Omar Payán-Serrano, Edén Bojórquez, Juan Bojórquez, Robespierre Chávez, Alfredo Reyes-Salazar, Manuel Barraza, Arturo López-Barraza, Héctor Rodríguez-Lozoya, Edgar Corona
Format: Article
Language:English
Published: MDPI AG 2017-05-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/7/6/563
_version_ 1818344809799090176
author Omar Payán-Serrano
Edén Bojórquez
Juan Bojórquez
Robespierre Chávez
Alfredo Reyes-Salazar
Manuel Barraza
Arturo López-Barraza
Héctor Rodríguez-Lozoya
Edgar Corona
author_facet Omar Payán-Serrano
Edén Bojórquez
Juan Bojórquez
Robespierre Chávez
Alfredo Reyes-Salazar
Manuel Barraza
Arturo López-Barraza
Héctor Rodríguez-Lozoya
Edgar Corona
author_sort Omar Payán-Serrano
collection DOAJ
description The aim of this paper is to investigate the prediction of maximum story drift of Multi-Degree of Freedom (MDOF) structures subjected to dynamics wind load using Artificial Neural Networks (ANNs) through the combination of several structural and turbulent wind parameters. The maximum story drift of 1600 MDOF structures under 16 simulated wind conditions are computed with the purpose of generating the data set for the networks training with the Levenberg–Marquardt method. The Shinozuka and Newmark methods are used to simulate the turbulent wind and dynamic response, respectively. In order to optimize the computational time required for the dynamic analyses, an array format based on the Shinozuka method is presented to perform the parallel computing. Finally, it is observed that the already trained ANNs allow for predicting adequately the maximum story drift with a correlation close to 99%.
first_indexed 2024-12-13T16:52:23Z
format Article
id doaj.art-e7adaa4e6ae64639a781fd9da134b33c
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-12-13T16:52:23Z
publishDate 2017-05-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-e7adaa4e6ae64639a781fd9da134b33c2022-12-21T23:38:01ZengMDPI AGApplied Sciences2076-34172017-05-017656310.3390/app7060563app7060563Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural NetworksOmar Payán-Serrano0Edén Bojórquez1Juan Bojórquez2Robespierre Chávez3Alfredo Reyes-Salazar4Manuel Barraza5Arturo López-Barraza6Héctor Rodríguez-Lozoya7Edgar Corona8Facultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoFacultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80040, MexicoThe aim of this paper is to investigate the prediction of maximum story drift of Multi-Degree of Freedom (MDOF) structures subjected to dynamics wind load using Artificial Neural Networks (ANNs) through the combination of several structural and turbulent wind parameters. The maximum story drift of 1600 MDOF structures under 16 simulated wind conditions are computed with the purpose of generating the data set for the networks training with the Levenberg–Marquardt method. The Shinozuka and Newmark methods are used to simulate the turbulent wind and dynamic response, respectively. In order to optimize the computational time required for the dynamic analyses, an array format based on the Shinozuka method is presented to perform the parallel computing. Finally, it is observed that the already trained ANNs allow for predicting adequately the maximum story drift with a correlation close to 99%.http://www.mdpi.com/2076-3417/7/6/563dynamic analysiswind simulationartificial neural networksparallel computing
spellingShingle Omar Payán-Serrano
Edén Bojórquez
Juan Bojórquez
Robespierre Chávez
Alfredo Reyes-Salazar
Manuel Barraza
Arturo López-Barraza
Héctor Rodríguez-Lozoya
Edgar Corona
Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks
Applied Sciences
dynamic analysis
wind simulation
artificial neural networks
parallel computing
title Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks
title_full Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks
title_fullStr Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks
title_full_unstemmed Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks
title_short Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks
title_sort prediction of maximum story drift of mdof structures under simulated wind loads using artificial neural networks
topic dynamic analysis
wind simulation
artificial neural networks
parallel computing
url http://www.mdpi.com/2076-3417/7/6/563
work_keys_str_mv AT omarpayanserrano predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT edenbojorquez predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT juanbojorquez predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT robespierrechavez predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT alfredoreyessalazar predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT manuelbarraza predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT arturolopezbarraza predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT hectorrodriguezlozoya predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks
AT edgarcorona predictionofmaximumstorydriftofmdofstructuresundersimulatedwindloadsusingartificialneuralnetworks