Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India

Widespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakha...

Full description

Bibliographic Details
Main Authors: Yesobu Yarragunta, Shuchita Srivastava, Debashis Mitra, Harish Chandra Chandola
Format: Article
Language:English
Published: Taylor & Francis Group 2020-02-01
Series:GIScience & Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/15481603.2020.1712100
_version_ 1797679058512773120
author Yesobu Yarragunta
Shuchita Srivastava
Debashis Mitra
Harish Chandra Chandola
author_facet Yesobu Yarragunta
Shuchita Srivastava
Debashis Mitra
Harish Chandra Chandola
author_sort Yesobu Yarragunta
collection DOAJ
description Widespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakhand using simulations of Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and in-situ observations of these gases over Dehradun, the capital of Uttarakhand. During Event-1, the observed CO mixing ratio over Dehradun increased from 25 April 2016 onwards, attained maximum (705.8 ± 258 ppbv) on 2 May 2016 and subsequently decreased. The rate of increase of daily baseline CO was 29 ppbv/day during HFAP (High Fire Activity Period). During Event-2, daily average concentrations of CO, O3, and NOx showed systematic increase over Dehradun during HFAP period. The rate of increase of CO was 9 ppbv/day, while it was very small for NOx and O3. To quantitatively estimate the influence of forest fire emissions, two WRF-Chem simulations were made: one with biomass burning (BB) emissions and other without BB emissions. These simulations showed 52% (34%) enhancement in CO, 52% (32%) enhancement in NOx, and 11% (9%) enhancement in O3 during HFAP for Event-1 (Event-2). A clear positive correlation (r = 0.89 for Event-1, r = 0.69 for Event-2) was found between ∆O3 (O3with BB minus O3without BB) and ∆CO (COwith BB minus COwithout BB), indicating rapid production of ozone in the fire plumes. For both the events, the vertical distribution of ∆O3, ∆CO, and ∆NOx showed that forest fire emissions influenced the air quality upto 6.5 km altitude. Peaks in ∆O3, ∆CO, and ∆NOx during different days suggested the role of varying dispersion and horizontal mixing of fire plumes.
first_indexed 2024-03-11T23:08:54Z
format Article
id doaj.art-e7b5bc2ea0c04ee49427b96c21d5ce38
institution Directory Open Access Journal
issn 1548-1603
1943-7226
language English
last_indexed 2024-03-11T23:08:54Z
publishDate 2020-02-01
publisher Taylor & Francis Group
record_format Article
series GIScience & Remote Sensing
spelling doaj.art-e7b5bc2ea0c04ee49427b96c21d5ce382023-09-21T12:34:16ZengTaylor & Francis GroupGIScience & Remote Sensing1548-16031943-72262020-02-0157219020610.1080/15481603.2020.17121001712100Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, IndiaYesobu Yarragunta0Shuchita Srivastava1Debashis Mitra2Harish Chandra Chandola3Indian Institute of Remote Sensing, Indian Space Research OrganisationIndian Institute of Remote Sensing, Indian Space Research OrganisationIndian Institute of Remote Sensing, Indian Space Research OrganisationDSB campus, Kumaun UniversityWidespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakhand using simulations of Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and in-situ observations of these gases over Dehradun, the capital of Uttarakhand. During Event-1, the observed CO mixing ratio over Dehradun increased from 25 April 2016 onwards, attained maximum (705.8 ± 258 ppbv) on 2 May 2016 and subsequently decreased. The rate of increase of daily baseline CO was 29 ppbv/day during HFAP (High Fire Activity Period). During Event-2, daily average concentrations of CO, O3, and NOx showed systematic increase over Dehradun during HFAP period. The rate of increase of CO was 9 ppbv/day, while it was very small for NOx and O3. To quantitatively estimate the influence of forest fire emissions, two WRF-Chem simulations were made: one with biomass burning (BB) emissions and other without BB emissions. These simulations showed 52% (34%) enhancement in CO, 52% (32%) enhancement in NOx, and 11% (9%) enhancement in O3 during HFAP for Event-1 (Event-2). A clear positive correlation (r = 0.89 for Event-1, r = 0.69 for Event-2) was found between ∆O3 (O3with BB minus O3without BB) and ∆CO (COwith BB minus COwithout BB), indicating rapid production of ozone in the fire plumes. For both the events, the vertical distribution of ∆O3, ∆CO, and ∆NOx showed that forest fire emissions influenced the air quality upto 6.5 km altitude. Peaks in ∆O3, ∆CO, and ∆NOx during different days suggested the role of varying dispersion and horizontal mixing of fire plumes.http://dx.doi.org/10.1080/15481603.2020.1712100forest firesgaseous pollutantsin-situ observationwrf-chem and dehradun
spellingShingle Yesobu Yarragunta
Shuchita Srivastava
Debashis Mitra
Harish Chandra Chandola
Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India
GIScience & Remote Sensing
forest fires
gaseous pollutants
in-situ observation
wrf-chem and dehradun
title Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India
title_full Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India
title_fullStr Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India
title_full_unstemmed Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India
title_short Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India
title_sort influence of forest fire episodes on the distribution of gaseous air pollutants over uttarakhand india
topic forest fires
gaseous pollutants
in-situ observation
wrf-chem and dehradun
url http://dx.doi.org/10.1080/15481603.2020.1712100
work_keys_str_mv AT yesobuyarragunta influenceofforestfireepisodesonthedistributionofgaseousairpollutantsoveruttarakhandindia
AT shuchitasrivastava influenceofforestfireepisodesonthedistributionofgaseousairpollutantsoveruttarakhandindia
AT debashismitra influenceofforestfireepisodesonthedistributionofgaseousairpollutantsoveruttarakhandindia
AT harishchandrachandola influenceofforestfireepisodesonthedistributionofgaseousairpollutantsoveruttarakhandindia