Summary: | The main aim of this paper is to contribute to the recently initiated research concerning geometric constructions of means, where the variables are appearing as line segments. The present study shows that all Lehmer means of two variables for integer power <i>k</i> and for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>=</mo> <mfrac> <mi>m</mi> <mn>2</mn> </mfrac> </mrow> </semantics> </math> </inline-formula>, where <i>m</i> is an integer, can be geometrically constructed, that Lehmer means for power <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and 2 can be geometrically constructed for any number of variables and that Lehmer means for power <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> can be geometrically constructed, where the number of variables is <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <msup> <mn>2</mn> <mi>m</mi> </msup> </mrow> </semantics> </math> </inline-formula> and <i>m</i> is a positive integer.
|