Edge Version of Metric Dimension and Doubly Resolving Sets of the Necklace Graph

Consider an undirected and connected graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>V</mi> <mi>G</mi> </msub> <mo>,</mo>...

Full description

Bibliographic Details
Main Authors: Jia-Bao Liu, Zohaib Zahid, Ruby Nasir, Waqas Nazeer
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/11/243
Description
Summary:Consider an undirected and connected graph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>V</mi> <mi>G</mi> </msub> <mo>,</mo> <msub> <mi>E</mi> <mi>G</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi>V</mi> <mi>G</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>G</mi> </msub> </semantics> </math> </inline-formula> represent the set of vertices and the set of edges respectively. The concept of edge version of metric dimension and doubly resolving sets is based on the distances of edges in a graph. In this paper, we find the edge version of metric dimension and doubly resolving sets for the necklace graph.
ISSN:2227-7390