Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study
Abstract Background Oil tea is a type of traditional tea beverage used for treating various ailments in minority population in Guangxi, China. Our previous study showed oil tea improved glucose and lipid levels in type 2 diabetic mice. Yet, the underling molecular mechanisms are still not understood...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-02-01
|
Series: | Nutrition & Metabolism |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12986-019-0337-8 |
_version_ | 1818389551660400640 |
---|---|
author | Qiantu Hu Huafeng Chen Yanli Zuo Qin He Xuan He Steve Simpson Wei Huang Hui Yang Haiying Zhang Rui Lin |
author_facet | Qiantu Hu Huafeng Chen Yanli Zuo Qin He Xuan He Steve Simpson Wei Huang Hui Yang Haiying Zhang Rui Lin |
author_sort | Qiantu Hu |
collection | DOAJ |
description | Abstract Background Oil tea is a type of traditional tea beverage used for treating various ailments in minority population in Guangxi, China. Our previous study showed oil tea improved glucose and lipid levels in type 2 diabetic mice. Yet, the underling molecular mechanisms are still not understood. This study aimed at assessing the effect of oil tea on glucose homeostasis and elucidating the molecular mechanisms underlying the oil tea-induced antidiabetic effects. Methods Twenty seven db/db mice were gavaged with saline, metformin and oil tea for 8 weeks with measurement of biochemical profiles. A real-time2 (RT2) profiler polymerase chain reaction (PCR) array comprising 84 genes involved in glucose metabolism was measured and validated by quantitative PCR (qPCR). The association between the candidate genes and type 2 diabetes were further analyzed in a case-control study in the Chinese minority population. Results Oil tea treatment facilitated glucose homeostasis by decreasing fasting blood glucose and total cholesterol, and improving glucose tolerance. Suppressing phosphoenolpyruvate carboxykinase 1 (PCK1) expression was observed in the oil tea treatment group and the expression was significantly correlated with fasting blood glucose levels. Target prediction and functional annotation by WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) revealed that PCK1 mainly involved in the glycolysis/gluconeogenesis pathway among the top Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. Both rs707555 and rs2071023 in PCK1 were significantly associated with type 2 diabetes in the minority population of Guangxi. Conclusion Our findings indicated oil tea improved glucose homeostasis via down-regulation of PCK1 and PCK1 may be a genetic marker for the treatment of type 2 diabetes. |
first_indexed | 2024-12-14T04:43:32Z |
format | Article |
id | doaj.art-e7d54ad55266415488f63dbf68ab488f |
institution | Directory Open Access Journal |
issn | 1743-7075 |
language | English |
last_indexed | 2024-12-14T04:43:32Z |
publishDate | 2019-02-01 |
publisher | BMC |
record_format | Article |
series | Nutrition & Metabolism |
spelling | doaj.art-e7d54ad55266415488f63dbf68ab488f2022-12-21T23:16:44ZengBMCNutrition & Metabolism1743-70752019-02-0116111210.1186/s12986-019-0337-8Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control studyQiantu Hu0Huafeng Chen1Yanli Zuo2Qin He3Xuan He4Steve Simpson5Wei Huang6Hui Yang7Haiying Zhang8Rui Lin9Center for Genomic and Personalized Medicine, Guangxi Medical UniversityGuangxi Center for Disease Prevention and ControlGeneral Practice School, Guangxi Medical UniversityGuangxi Center for Disease Prevention and ControlGuangxi Center for Disease Prevention and ControlMelbourne School of Population & Global Health, University of MelbourneGuangxi Center for Disease Prevention and ControlGuangxi Center for Disease Prevention and ControlCenter for Genomic and Personalized Medicine, Guangxi Medical UniversityCenter for Genomic and Personalized Medicine, Guangxi Medical UniversityAbstract Background Oil tea is a type of traditional tea beverage used for treating various ailments in minority population in Guangxi, China. Our previous study showed oil tea improved glucose and lipid levels in type 2 diabetic mice. Yet, the underling molecular mechanisms are still not understood. This study aimed at assessing the effect of oil tea on glucose homeostasis and elucidating the molecular mechanisms underlying the oil tea-induced antidiabetic effects. Methods Twenty seven db/db mice were gavaged with saline, metformin and oil tea for 8 weeks with measurement of biochemical profiles. A real-time2 (RT2) profiler polymerase chain reaction (PCR) array comprising 84 genes involved in glucose metabolism was measured and validated by quantitative PCR (qPCR). The association between the candidate genes and type 2 diabetes were further analyzed in a case-control study in the Chinese minority population. Results Oil tea treatment facilitated glucose homeostasis by decreasing fasting blood glucose and total cholesterol, and improving glucose tolerance. Suppressing phosphoenolpyruvate carboxykinase 1 (PCK1) expression was observed in the oil tea treatment group and the expression was significantly correlated with fasting blood glucose levels. Target prediction and functional annotation by WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) revealed that PCK1 mainly involved in the glycolysis/gluconeogenesis pathway among the top Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. Both rs707555 and rs2071023 in PCK1 were significantly associated with type 2 diabetes in the minority population of Guangxi. Conclusion Our findings indicated oil tea improved glucose homeostasis via down-regulation of PCK1 and PCK1 may be a genetic marker for the treatment of type 2 diabetes.http://link.springer.com/article/10.1186/s12986-019-0337-8Fasting blood glucoseGlucose toleranceGlycolysis/gluconeogenesis pathwayOil teaPCK1RT2 profiler PCR array |
spellingShingle | Qiantu Hu Huafeng Chen Yanli Zuo Qin He Xuan He Steve Simpson Wei Huang Hui Yang Haiying Zhang Rui Lin Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study Nutrition & Metabolism Fasting blood glucose Glucose tolerance Glycolysis/gluconeogenesis pathway Oil tea PCK1 RT2 profiler PCR array |
title | Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study |
title_full | Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study |
title_fullStr | Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study |
title_full_unstemmed | Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study |
title_short | Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study |
title_sort | role of pck1 gene on oil tea induced glucose homeostasis and type 2 diabetes an animal experiment and a case control study |
topic | Fasting blood glucose Glucose tolerance Glycolysis/gluconeogenesis pathway Oil tea PCK1 RT2 profiler PCR array |
url | http://link.springer.com/article/10.1186/s12986-019-0337-8 |
work_keys_str_mv | AT qiantuhu roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT huafengchen roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT yanlizuo roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT qinhe roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT xuanhe roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT stevesimpson roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT weihuang roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT huiyang roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT haiyingzhang roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy AT ruilin roleofpck1geneonoilteainducedglucosehomeostasisandtype2diabetesananimalexperimentandacasecontrolstudy |