Otolith geochemistry reflects life histories of Pacific bluefin tuna.

Understanding biological and environmental factors that influence movement behaviors and population connectivity of highly migratory fishes is essential for cooperative international management and conservation of exploited populations, like bluefin tuna. Pacific bluefin tuna Thunnus orientalis (PBT...

Full description

Bibliographic Details
Main Authors: John A Mohan, Heidi Dewar, Owyn E Snodgrass, Nathan R Miller, Yosuke Tanaka, Seiji Ohshimo, Jay R Rooker, Malcom Francis, R J David Wells
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0275899
Description
Summary:Understanding biological and environmental factors that influence movement behaviors and population connectivity of highly migratory fishes is essential for cooperative international management and conservation of exploited populations, like bluefin tuna. Pacific bluefin tuna Thunnus orientalis (PBT) spawn in the western Pacific Ocean and then juveniles disperse to foraging grounds across the North Pacific. Several techniques have been used to characterize the distribution and movement of PBT, but few methods can provide complete records across ontogeny from larvae to adult in individual fish. Here, otolith biominerals of large PBT collected from the western, eastern, and south Pacific Ocean, were analyzed for a suite of trace elements across calcified/proteinaceous growth zones to investigate patterns across ontogeny. Three element:Ca ratios, Li:Ca, Mg:Ca, and Mn:Ca displayed enrichment in the otolith core, then decreased to low stable levels after age 1-2 years. Thermal and metabolic physiologies, common diets, or ambient water chemistry likely influenced otolith crystallization, protein content, and elemental incorporation in early life. Although similar patterns were also exhibited for otolith Sr:Ca, Ba:Ca and Zn:Ca in the first year, variability in these elements differed significantly after age-2 and in the otolith edges by capture region, suggesting ocean-specific environmental factors or growth-related physiologies affected otolith mineralization across ontogeny.
ISSN:1932-6203