Variational Bayesian Inference in High-Dimensional Linear Mixed Models
In high-dimensional regression models, the Bayesian lasso with the Gaussian spike and slab priors is widely adopted to select variables and estimate unknown parameters. However, it involves large matrix computations in a standard Gibbs sampler. To solve this issue, the Skinny Gibbs sampler is employ...
Autori principali: | Jieyi Yi, Niansheng Tang |
---|---|
Natura: | Articolo |
Lingua: | English |
Pubblicazione: |
MDPI AG
2022-01-01
|
Serie: | Mathematics |
Soggetti: | |
Accesso online: | https://www.mdpi.com/2227-7390/10/3/463 |
Documenti analoghi
Documenti analoghi
-
High-Dimensional Variable Selection for Quantile Regression Based on Variational Bayesian Method
di: Dengluan Dai, et al.
Pubblicazione: (2023-05-01) -
Stabilizing training of affine coupling layers for high-dimensional variational inference
di: Daniel Andrade
Pubblicazione: (2024-01-01) -
Regularizing priors for Bayesian VAR applications to large ecological datasets
di: Eric J. Ward, et al.
Pubblicazione: (2022-11-01) -
Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations
di: Qi Zhang, et al.
Pubblicazione: (2024-03-01) -
Bayesian Inference under Small Sample Sizes Using General Noninformative Priors
di: Jingjing He, et al.
Pubblicazione: (2021-11-01)