Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus

In this article, we use quantum integrals to derive Hermite–Hadamard inequalities for preinvex functions and demonstrate their validity with mathematical examples. We use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semanti...

Full description

Bibliographic Details
Main Authors: Surang Sitho, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/14/1666
Description
Summary:In this article, we use quantum integrals to derive Hermite–Hadamard inequalities for preinvex functions and demonstrate their validity with mathematical examples. We use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>q</mi><msub><mi>ϰ</mi><mn>2</mn></msub></msup></semantics></math></inline-formula>-quantum integral to show midpoint and trapezoidal inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>q</mi><msub><mi>ϰ</mi><mn>2</mn></msub></msup></semantics></math></inline-formula>-differentiable preinvex functions. Furthermore, we demonstrate with an example that the previously proved Hermite–Hadamard-type inequality for preinvex functions via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-quantum integral is not valid for preinvex functions, and we present its proper form. We use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-quantum integrals to show midpoint inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-differentiable preinvex functions. It is also demonstrated that by considering the limit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>→</mo><msup><mn>1</mn><mo>−</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mfenced separators="" open="(" close=")"><msub><mi>ϰ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>ϰ</mi><mn>1</mn></msub></mfenced><mo>=</mo><mo>−</mo><mi>η</mi><mfenced separators="" open="(" close=")"><msub><mi>ϰ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ϰ</mi><mn>2</mn></msub></mfenced><mo>=</mo><msub><mi>ϰ</mi><mn>2</mn></msub><mo>−</mo><msub><mi>ϰ</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> in the newly derived results, the newly proved findings can be turned into certain known results.
ISSN:2227-7390