Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus

In this article, we use quantum integrals to derive Hermite–Hadamard inequalities for preinvex functions and demonstrate their validity with mathematical examples. We use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semanti...

Full description

Bibliographic Details
Main Authors: Surang Sitho, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/14/1666
_version_ 1797526686545215488
author Surang Sitho
Muhammad Aamir Ali
Hüseyin Budak
Sotiris K. Ntouyas
Jessada Tariboon
author_facet Surang Sitho
Muhammad Aamir Ali
Hüseyin Budak
Sotiris K. Ntouyas
Jessada Tariboon
author_sort Surang Sitho
collection DOAJ
description In this article, we use quantum integrals to derive Hermite–Hadamard inequalities for preinvex functions and demonstrate their validity with mathematical examples. We use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>q</mi><msub><mi>ϰ</mi><mn>2</mn></msub></msup></semantics></math></inline-formula>-quantum integral to show midpoint and trapezoidal inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>q</mi><msub><mi>ϰ</mi><mn>2</mn></msub></msup></semantics></math></inline-formula>-differentiable preinvex functions. Furthermore, we demonstrate with an example that the previously proved Hermite–Hadamard-type inequality for preinvex functions via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-quantum integral is not valid for preinvex functions, and we present its proper form. We use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-quantum integrals to show midpoint inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-differentiable preinvex functions. It is also demonstrated that by considering the limit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>→</mo><msup><mn>1</mn><mo>−</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mfenced separators="" open="(" close=")"><msub><mi>ϰ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>ϰ</mi><mn>1</mn></msub></mfenced><mo>=</mo><mo>−</mo><mi>η</mi><mfenced separators="" open="(" close=")"><msub><mi>ϰ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ϰ</mi><mn>2</mn></msub></mfenced><mo>=</mo><msub><mi>ϰ</mi><mn>2</mn></msub><mo>−</mo><msub><mi>ϰ</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> in the newly derived results, the newly proved findings can be turned into certain known results.
first_indexed 2024-03-10T09:32:52Z
format Article
id doaj.art-e7ef8baf3e454ef39a18609d51325ac0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T09:32:52Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e7ef8baf3e454ef39a18609d51325ac02023-11-22T04:20:18ZengMDPI AGMathematics2227-73902021-07-01914166610.3390/math9141666Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum CalculusSurang Sitho0Muhammad Aamir Ali1Hüseyin Budak2Sotiris K. Ntouyas3Jessada Tariboon4Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandJiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaDepartment of Mathematics, Faculty of Science and Arts, Düzce University, Düzce 81620, TurkeyDepartment of Mathematics, University of Ioannina, 45110 Ioannina, GreeceIntelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandIn this article, we use quantum integrals to derive Hermite–Hadamard inequalities for preinvex functions and demonstrate their validity with mathematical examples. We use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>q</mi><msub><mi>ϰ</mi><mn>2</mn></msub></msup></semantics></math></inline-formula>-quantum integral to show midpoint and trapezoidal inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>q</mi><msub><mi>ϰ</mi><mn>2</mn></msub></msup></semantics></math></inline-formula>-differentiable preinvex functions. Furthermore, we demonstrate with an example that the previously proved Hermite–Hadamard-type inequality for preinvex functions via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-quantum integral is not valid for preinvex functions, and we present its proper form. We use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-quantum integrals to show midpoint inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><msub><mi>ϰ</mi><mn>1</mn></msub></msub></semantics></math></inline-formula>-differentiable preinvex functions. It is also demonstrated that by considering the limit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>→</mo><msup><mn>1</mn><mo>−</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mfenced separators="" open="(" close=")"><msub><mi>ϰ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>ϰ</mi><mn>1</mn></msub></mfenced><mo>=</mo><mo>−</mo><mi>η</mi><mfenced separators="" open="(" close=")"><msub><mi>ϰ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ϰ</mi><mn>2</mn></msub></mfenced><mo>=</mo><msub><mi>ϰ</mi><mn>2</mn></msub><mo>−</mo><msub><mi>ϰ</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> in the newly derived results, the newly proved findings can be turned into certain known results.https://www.mdpi.com/2227-7390/9/14/1666Hermite–Hadamard inequalityq-integralquantum calculuspreinvex functiontrapezoid inequalitiesmidpoint inequalities
spellingShingle Surang Sitho
Muhammad Aamir Ali
Hüseyin Budak
Sotiris K. Ntouyas
Jessada Tariboon
Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
Mathematics
Hermite–Hadamard inequality
q-integral
quantum calculus
preinvex function
trapezoid inequalities
midpoint inequalities
title Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
title_full Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
title_fullStr Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
title_full_unstemmed Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
title_short Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
title_sort trapezoid and midpoint type inequalities for preinvex functions via quantum calculus
topic Hermite–Hadamard inequality
q-integral
quantum calculus
preinvex function
trapezoid inequalities
midpoint inequalities
url https://www.mdpi.com/2227-7390/9/14/1666
work_keys_str_mv AT surangsitho trapezoidandmidpointtypeinequalitiesforpreinvexfunctionsviaquantumcalculus
AT muhammadaamirali trapezoidandmidpointtypeinequalitiesforpreinvexfunctionsviaquantumcalculus
AT huseyinbudak trapezoidandmidpointtypeinequalitiesforpreinvexfunctionsviaquantumcalculus
AT sotiriskntouyas trapezoidandmidpointtypeinequalitiesforpreinvexfunctionsviaquantumcalculus
AT jessadatariboon trapezoidandmidpointtypeinequalitiesforpreinvexfunctionsviaquantumcalculus