Fast cloud parameter retrievals of MIPAS/Envisat

The infrared limb spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite include detailed information on tropospheric clouds and polar stratospheric clouds (PSC). However, no consolidated cloud product is available for the scientific community...

Full description

Bibliographic Details
Main Authors: R. Spang, K. Arndt, A. Dudhia, M. Höpfner, L. Hoffmann, J. Hurley, R. G. Grainger, S. Griessbach, C. Poulsen, J. J. Remedios, M. Riese, H. Sembhi, R. Siddans, A. Waterfall, C. Zehner
Format: Article
Language:English
Published: Copernicus Publications 2012-08-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/7135/2012/acp-12-7135-2012.pdf
_version_ 1818537095186087936
author R. Spang
K. Arndt
A. Dudhia
M. Höpfner
L. Hoffmann
J. Hurley
R. G. Grainger
S. Griessbach
C. Poulsen
J. J. Remedios
M. Riese
H. Sembhi
R. Siddans
A. Waterfall
C. Zehner
author_facet R. Spang
K. Arndt
A. Dudhia
M. Höpfner
L. Hoffmann
J. Hurley
R. G. Grainger
S. Griessbach
C. Poulsen
J. J. Remedios
M. Riese
H. Sembhi
R. Siddans
A. Waterfall
C. Zehner
author_sort R. Spang
collection DOAJ
description The infrared limb spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite include detailed information on tropospheric clouds and polar stratospheric clouds (PSC). However, no consolidated cloud product is available for the scientific community. Here we describe a fast prototype processor for cloud parameter retrieval from MIPAS (MIPclouds). Retrieval of parameters such as cloud top height, temperature, and extinction are implemented, as well as retrieval of microphysical parameters, e.g. effective radius and the integrated quantities over the limb path (surface area density and volume density). MIPclouds classifies clouds as either liquid or ice cloud in the upper troposphere and polar stratospheric clouds types in the stratosphere based on statistical combinations of colour ratios and brightness temperature differences. <br><br> Comparison of limb measurements of clouds with model results or cloud parameters from nadir looking instruments is often difficult due to different observation geometries. We therefore introduce a new concept, the limb-integrated surface area density path (ADP). By means of validation and radiative transfer calculations of realistic 2-D cloud fields as input for a blind test retrieval (BTR), we demonstrate that ADP is an extremely valuable parameter for future comparison with model data of ice water content, when applying limb integration (ray tracing) through the model fields. In addition, ADP is used for a more objective definition of detection thresholds of the applied detection methods. Based on BTR, a detection threshold of ADP = 10<sup>7</sup> μm<sup>2</sup> cm<sup>−2</sup> and an ice water content of 10<sup>−5</sup> g m<sup>−3</sup> is estimated, depending on the horizontal and vertical extent of the cloud. <br><br> Intensive validation of the cloud detection methods shows that the limb-sounding MIPAS instrument has a sensitivity in detecting stratospheric and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa) on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II) limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields). The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.
first_indexed 2024-12-11T18:46:21Z
format Article
id doaj.art-e7f0c9a8010d4037bff95dab7e7fc2a4
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-11T18:46:21Z
publishDate 2012-08-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-e7f0c9a8010d4037bff95dab7e7fc2a42022-12-22T00:54:27ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-08-0112157135716410.5194/acp-12-7135-2012Fast cloud parameter retrievals of MIPAS/EnvisatR. SpangK. ArndtA. DudhiaM. HöpfnerL. HoffmannJ. HurleyR. G. GraingerS. GriessbachC. PoulsenJ. J. RemediosM. RieseH. SembhiR. SiddansA. WaterfallC. ZehnerThe infrared limb spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite include detailed information on tropospheric clouds and polar stratospheric clouds (PSC). However, no consolidated cloud product is available for the scientific community. Here we describe a fast prototype processor for cloud parameter retrieval from MIPAS (MIPclouds). Retrieval of parameters such as cloud top height, temperature, and extinction are implemented, as well as retrieval of microphysical parameters, e.g. effective radius and the integrated quantities over the limb path (surface area density and volume density). MIPclouds classifies clouds as either liquid or ice cloud in the upper troposphere and polar stratospheric clouds types in the stratosphere based on statistical combinations of colour ratios and brightness temperature differences. <br><br> Comparison of limb measurements of clouds with model results or cloud parameters from nadir looking instruments is often difficult due to different observation geometries. We therefore introduce a new concept, the limb-integrated surface area density path (ADP). By means of validation and radiative transfer calculations of realistic 2-D cloud fields as input for a blind test retrieval (BTR), we demonstrate that ADP is an extremely valuable parameter for future comparison with model data of ice water content, when applying limb integration (ray tracing) through the model fields. In addition, ADP is used for a more objective definition of detection thresholds of the applied detection methods. Based on BTR, a detection threshold of ADP = 10<sup>7</sup> μm<sup>2</sup> cm<sup>−2</sup> and an ice water content of 10<sup>−5</sup> g m<sup>−3</sup> is estimated, depending on the horizontal and vertical extent of the cloud. <br><br> Intensive validation of the cloud detection methods shows that the limb-sounding MIPAS instrument has a sensitivity in detecting stratospheric and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa) on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II) limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields). The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.http://www.atmos-chem-phys.net/12/7135/2012/acp-12-7135-2012.pdf
spellingShingle R. Spang
K. Arndt
A. Dudhia
M. Höpfner
L. Hoffmann
J. Hurley
R. G. Grainger
S. Griessbach
C. Poulsen
J. J. Remedios
M. Riese
H. Sembhi
R. Siddans
A. Waterfall
C. Zehner
Fast cloud parameter retrievals of MIPAS/Envisat
Atmospheric Chemistry and Physics
title Fast cloud parameter retrievals of MIPAS/Envisat
title_full Fast cloud parameter retrievals of MIPAS/Envisat
title_fullStr Fast cloud parameter retrievals of MIPAS/Envisat
title_full_unstemmed Fast cloud parameter retrievals of MIPAS/Envisat
title_short Fast cloud parameter retrievals of MIPAS/Envisat
title_sort fast cloud parameter retrievals of mipas envisat
url http://www.atmos-chem-phys.net/12/7135/2012/acp-12-7135-2012.pdf
work_keys_str_mv AT rspang fastcloudparameterretrievalsofmipasenvisat
AT karndt fastcloudparameterretrievalsofmipasenvisat
AT adudhia fastcloudparameterretrievalsofmipasenvisat
AT mhopfner fastcloudparameterretrievalsofmipasenvisat
AT lhoffmann fastcloudparameterretrievalsofmipasenvisat
AT jhurley fastcloudparameterretrievalsofmipasenvisat
AT rggrainger fastcloudparameterretrievalsofmipasenvisat
AT sgriessbach fastcloudparameterretrievalsofmipasenvisat
AT cpoulsen fastcloudparameterretrievalsofmipasenvisat
AT jjremedios fastcloudparameterretrievalsofmipasenvisat
AT mriese fastcloudparameterretrievalsofmipasenvisat
AT hsembhi fastcloudparameterretrievalsofmipasenvisat
AT rsiddans fastcloudparameterretrievalsofmipasenvisat
AT awaterfall fastcloudparameterretrievalsofmipasenvisat
AT czehner fastcloudparameterretrievalsofmipasenvisat