On Mixed Metric Dimension of Some Path Related Graphs

A vertex <inline-formula> <tex-math notation="LaTeX">$k\in V_{G}$ </tex-math></inline-formula> determined two elements (vertices or edges) <inline-formula> <tex-math notation="LaTeX">$\ell,m \in V_{G}\cup E_{G}$ </tex-math></inline-for...

Full description

Bibliographic Details
Main Authors: Hassan Raza, Ying Ji, Shaojian Qu
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9222153/
Description
Summary:A vertex <inline-formula> <tex-math notation="LaTeX">$k\in V_{G}$ </tex-math></inline-formula> determined two elements (vertices or edges) <inline-formula> <tex-math notation="LaTeX">$\ell,m \in V_{G}\cup E_{G}$ </tex-math></inline-formula>, if <inline-formula> <tex-math notation="LaTeX">$d_{G}(k,\ell)\neq d_{G}(k,m)$ </tex-math></inline-formula>. A set <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula> of vertices in a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is a mixed metric generator for <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, if two distinct elements (vertices or edges) are determined by some vertex set of <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula>. The least number of elements in the vertex set of <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula> is known as mixed metric dimension, and denoted as <inline-formula> <tex-math notation="LaTeX">$dim_{m}(G)$ </tex-math></inline-formula>. In this article, the mixed metric dimension of some path related graphs is obtained. Those path related graphs are <inline-formula> <tex-math notation="LaTeX">$P^{2}_{n}$ </tex-math></inline-formula> the square of a path, <inline-formula> <tex-math notation="LaTeX">$T(P_{n})$ </tex-math></inline-formula> total graph of a path, the middle graph of a path <inline-formula> <tex-math notation="LaTeX">$M(P_{n})$ </tex-math></inline-formula>, and splitting graph of a path <inline-formula> <tex-math notation="LaTeX">$S(P_{n})$ </tex-math></inline-formula>. We proved that these families of graphs have constant and unbounded mixed metric dimension, respectively. We further presented an improved result for the metric dimension of the splitting graph of a path <inline-formula> <tex-math notation="LaTeX">$S(P_{n})$ </tex-math></inline-formula>.
ISSN:2169-3536