On Mixed Metric Dimension of Some Path Related Graphs

A vertex <inline-formula> <tex-math notation="LaTeX">$k\in V_{G}$ </tex-math></inline-formula> determined two elements (vertices or edges) <inline-formula> <tex-math notation="LaTeX">$\ell,m \in V_{G}\cup E_{G}$ </tex-math></inline-for...

Full description

Bibliographic Details
Main Authors: Hassan Raza, Ying Ji, Shaojian Qu
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9222153/
_version_ 1798001917073293312
author Hassan Raza
Ying Ji
Shaojian Qu
author_facet Hassan Raza
Ying Ji
Shaojian Qu
author_sort Hassan Raza
collection DOAJ
description A vertex <inline-formula> <tex-math notation="LaTeX">$k\in V_{G}$ </tex-math></inline-formula> determined two elements (vertices or edges) <inline-formula> <tex-math notation="LaTeX">$\ell,m \in V_{G}\cup E_{G}$ </tex-math></inline-formula>, if <inline-formula> <tex-math notation="LaTeX">$d_{G}(k,\ell)\neq d_{G}(k,m)$ </tex-math></inline-formula>. A set <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula> of vertices in a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is a mixed metric generator for <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, if two distinct elements (vertices or edges) are determined by some vertex set of <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula>. The least number of elements in the vertex set of <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula> is known as mixed metric dimension, and denoted as <inline-formula> <tex-math notation="LaTeX">$dim_{m}(G)$ </tex-math></inline-formula>. In this article, the mixed metric dimension of some path related graphs is obtained. Those path related graphs are <inline-formula> <tex-math notation="LaTeX">$P^{2}_{n}$ </tex-math></inline-formula> the square of a path, <inline-formula> <tex-math notation="LaTeX">$T(P_{n})$ </tex-math></inline-formula> total graph of a path, the middle graph of a path <inline-formula> <tex-math notation="LaTeX">$M(P_{n})$ </tex-math></inline-formula>, and splitting graph of a path <inline-formula> <tex-math notation="LaTeX">$S(P_{n})$ </tex-math></inline-formula>. We proved that these families of graphs have constant and unbounded mixed metric dimension, respectively. We further presented an improved result for the metric dimension of the splitting graph of a path <inline-formula> <tex-math notation="LaTeX">$S(P_{n})$ </tex-math></inline-formula>.
first_indexed 2024-04-11T11:44:56Z
format Article
id doaj.art-e7f5c581aea740edb640d72f9ff6ba79
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-11T11:44:56Z
publishDate 2020-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-e7f5c581aea740edb640d72f9ff6ba792022-12-22T04:25:42ZengIEEEIEEE Access2169-35362020-01-01818814618815310.1109/ACCESS.2020.30307139222153On Mixed Metric Dimension of Some Path Related GraphsHassan Raza0https://orcid.org/0000-0002-1477-3608Ying Ji1https://orcid.org/0000-0002-2985-6449Shaojian Qu2https://orcid.org/0000-0002-4746-270XBusiness School, University of Shanghai for Science and Technology, Shanghai, ChinaBusiness School, University of Shanghai for Science and Technology, Shanghai, ChinaManagement Engineering School, University of Nanjing for Information Science and Technology, Nanjing, ChinaA vertex <inline-formula> <tex-math notation="LaTeX">$k\in V_{G}$ </tex-math></inline-formula> determined two elements (vertices or edges) <inline-formula> <tex-math notation="LaTeX">$\ell,m \in V_{G}\cup E_{G}$ </tex-math></inline-formula>, if <inline-formula> <tex-math notation="LaTeX">$d_{G}(k,\ell)\neq d_{G}(k,m)$ </tex-math></inline-formula>. A set <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula> of vertices in a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> is a mixed metric generator for <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, if two distinct elements (vertices or edges) are determined by some vertex set of <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula>. The least number of elements in the vertex set of <inline-formula> <tex-math notation="LaTeX">$R_ {\text {m}}$ </tex-math></inline-formula> is known as mixed metric dimension, and denoted as <inline-formula> <tex-math notation="LaTeX">$dim_{m}(G)$ </tex-math></inline-formula>. In this article, the mixed metric dimension of some path related graphs is obtained. Those path related graphs are <inline-formula> <tex-math notation="LaTeX">$P^{2}_{n}$ </tex-math></inline-formula> the square of a path, <inline-formula> <tex-math notation="LaTeX">$T(P_{n})$ </tex-math></inline-formula> total graph of a path, the middle graph of a path <inline-formula> <tex-math notation="LaTeX">$M(P_{n})$ </tex-math></inline-formula>, and splitting graph of a path <inline-formula> <tex-math notation="LaTeX">$S(P_{n})$ </tex-math></inline-formula>. We proved that these families of graphs have constant and unbounded mixed metric dimension, respectively. We further presented an improved result for the metric dimension of the splitting graph of a path <inline-formula> <tex-math notation="LaTeX">$S(P_{n})$ </tex-math></inline-formula>.https://ieeexplore.ieee.org/document/9222153/Mixed metric dimensionmetric dimensionedge metric dimensionpath related graphs
spellingShingle Hassan Raza
Ying Ji
Shaojian Qu
On Mixed Metric Dimension of Some Path Related Graphs
IEEE Access
Mixed metric dimension
metric dimension
edge metric dimension
path related graphs
title On Mixed Metric Dimension of Some Path Related Graphs
title_full On Mixed Metric Dimension of Some Path Related Graphs
title_fullStr On Mixed Metric Dimension of Some Path Related Graphs
title_full_unstemmed On Mixed Metric Dimension of Some Path Related Graphs
title_short On Mixed Metric Dimension of Some Path Related Graphs
title_sort on mixed metric dimension of some path related graphs
topic Mixed metric dimension
metric dimension
edge metric dimension
path related graphs
url https://ieeexplore.ieee.org/document/9222153/
work_keys_str_mv AT hassanraza onmixedmetricdimensionofsomepathrelatedgraphs
AT yingji onmixedmetricdimensionofsomepathrelatedgraphs
AT shaojianqu onmixedmetricdimensionofsomepathrelatedgraphs