SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields

To understand its evolution and the effects of its eruptive events, the Sun is permanently monitored by multiple satellite missions. The optically thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosph...

Full description

Bibliographic Details
Main Authors: Robert Jarolim, Benoit Tremblay, Andrés Muñoz-Jaramillo, Kyriaki-Margarita Bintsi, Anna Jungbluth, Miraflor Santos, Angelos Vourlidas, James P. Mason, Sairam Sundaresan, Cooper Downs, Ronald M. Caplan
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/ad12d2
_version_ 1797347718973095936
author Robert Jarolim
Benoit Tremblay
Andrés Muñoz-Jaramillo
Kyriaki-Margarita Bintsi
Anna Jungbluth
Miraflor Santos
Angelos Vourlidas
James P. Mason
Sairam Sundaresan
Cooper Downs
Ronald M. Caplan
author_facet Robert Jarolim
Benoit Tremblay
Andrés Muñoz-Jaramillo
Kyriaki-Margarita Bintsi
Anna Jungbluth
Miraflor Santos
Angelos Vourlidas
James P. Mason
Sairam Sundaresan
Cooper Downs
Ronald M. Caplan
author_sort Robert Jarolim
collection DOAJ
description To understand its evolution and the effects of its eruptive events, the Sun is permanently monitored by multiple satellite missions. The optically thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosphere; however, this information is the missing link to understand the Sun as it is: a 3D evolving star. We present a method that enables a complete 3D representation of the uppermost solar layer (corona) observed in extreme ultraviolet (EUV) light. We use a deep-learning approach for 3D scene representation that accounts for radiative transfer to map the entire solar atmosphere from three simultaneous observations. We demonstrate that our approach provides unprecedented reconstructions of the solar poles and directly enables height estimates of coronal structures, solar filaments, coronal hole profiles, and coronal mass ejections. We validate the approach using model-generated synthetic EUV images, finding that our method accurately captures the 3D geometry of the Sun even from a limited number of 32 ecliptic viewpoints (∣latitude∣ ≤ 7°). We quantify the uncertainties of our model using an ensemble approach that allows us to estimate the model performance in the absence of a ground truth. Our method enables a novel view of our closest star and is a breakthrough technology for the efficient use of multi-instrument data sets, which paves the way for future cluster missions.
first_indexed 2024-03-08T11:51:52Z
format Article
id doaj.art-e7f6847784534d7b9e393e2ddc58fbd3
institution Directory Open Access Journal
issn 2041-8205
language English
last_indexed 2024-03-08T11:51:52Z
publishDate 2024-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj.art-e7f6847784534d7b9e393e2ddc58fbd32024-01-24T09:14:31ZengIOP PublishingThe Astrophysical Journal Letters2041-82052024-01-019612L3110.3847/2041-8213/ad12d2SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance FieldsRobert Jarolim0https://orcid.org/0000-0002-9309-2981Benoit Tremblay1https://orcid.org/0000-0002-5181-7913Andrés Muñoz-Jaramillo2https://orcid.org/0000-0002-4716-0840Kyriaki-Margarita Bintsi3https://orcid.org/0000-0003-3875-7757Anna Jungbluth4https://orcid.org/0000-0002-9888-6262Miraflor Santos5Angelos Vourlidas6https://orcid.org/0000-0002-8164-5948James P. Mason7https://orcid.org/0000-0002-3783-5509Sairam Sundaresan8https://orcid.org/0000-0002-6648-0591Cooper Downs9https://orcid.org/0000-0003-1759-4354Ronald M. Caplan10https://orcid.org/0000-0002-2633-4290University of Graz , Universitätsplatz 5, A-8010 Graz, AustriaHigh Altitude Observatory , 3080 Center Green Dr., Boulder, CO 80301, USASouthwest Research Institute , 1050 Walnut St., Suite 300, Boulder, CO 80302, USAImperial College London , London SW7 2AZ, UKEuropean Space Agency (ESA)—ECSAT , Fermi Avenue, Harwell, UKMassachusetts Institute of Technology , 77 Massachusetts Ave., Cambridge, MA 02139, USAJohns Hopkins University Applied Physics Laboratory , 11100 Johns Hopkins Rd., Laurel, MD 20723, USAJohns Hopkins University Applied Physics Laboratory , 11100 Johns Hopkins Rd., Laurel, MD 20723, USAIntel Labs, 2200 Mission College Blvd. , Santa Clara, CA 95054, USAPredictive Science Inc. , 9990 Mesa Rim Rd., Suite 170, San Diego, CA 92121, USAPredictive Science Inc. , 9990 Mesa Rim Rd., Suite 170, San Diego, CA 92121, USATo understand its evolution and the effects of its eruptive events, the Sun is permanently monitored by multiple satellite missions. The optically thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosphere; however, this information is the missing link to understand the Sun as it is: a 3D evolving star. We present a method that enables a complete 3D representation of the uppermost solar layer (corona) observed in extreme ultraviolet (EUV) light. We use a deep-learning approach for 3D scene representation that accounts for radiative transfer to map the entire solar atmosphere from three simultaneous observations. We demonstrate that our approach provides unprecedented reconstructions of the solar poles and directly enables height estimates of coronal structures, solar filaments, coronal hole profiles, and coronal mass ejections. We validate the approach using model-generated synthetic EUV images, finding that our method accurately captures the 3D geometry of the Sun even from a limited number of 32 ecliptic viewpoints (∣latitude∣ ≤ 7°). We quantify the uncertainties of our model using an ensemble approach that allows us to estimate the model performance in the absence of a ground truth. Our method enables a novel view of our closest star and is a breakthrough technology for the efficient use of multi-instrument data sets, which paves the way for future cluster missions.https://doi.org/10.3847/2041-8213/ad12d2Solar coronaActive solar coronaNeural networksSolar filament eruptionsSolar coronal holes
spellingShingle Robert Jarolim
Benoit Tremblay
Andrés Muñoz-Jaramillo
Kyriaki-Margarita Bintsi
Anna Jungbluth
Miraflor Santos
Angelos Vourlidas
James P. Mason
Sairam Sundaresan
Cooper Downs
Ronald M. Caplan
SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields
The Astrophysical Journal Letters
Solar corona
Active solar corona
Neural networks
Solar filament eruptions
Solar coronal holes
title SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields
title_full SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields
title_fullStr SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields
title_full_unstemmed SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields
title_short SuNeRF: 3D Reconstruction of the Solar EUV Corona Using Neural Radiance Fields
title_sort sunerf 3d reconstruction of the solar euv corona using neural radiance fields
topic Solar corona
Active solar corona
Neural networks
Solar filament eruptions
Solar coronal holes
url https://doi.org/10.3847/2041-8213/ad12d2
work_keys_str_mv AT robertjarolim sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT benoittremblay sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT andresmunozjaramillo sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT kyriakimargaritabintsi sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT annajungbluth sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT miraflorsantos sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT angelosvourlidas sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT jamespmason sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT sairamsundaresan sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT cooperdowns sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields
AT ronaldmcaplan sunerf3dreconstructionofthesolareuvcoronausingneuralradiancefields