Summary: | In this work, the dynamic behavior of gallium nitride on silicon high electron mobility transistors (GaN/Si HEMT) with carbon doped buffer is modeled using a finite state machine embedded into the core Advanced SPICE Model for High Electron Mobility Transistor (ASM-HEMT). The model is based on the physics of trapping and detrapping of electrons in carbon at nitrogen-site acceptor trap (denoted here as <inline-formula> <tex-math notation="LaTeX">$\text{C}_{N}$ </tex-math></inline-formula>) and does not require an equivalent Resistance-Capacitance circuit. The model is validated against three off-state stress drain voltages of 50 V, 100 V, and 150 V using only <inline-formula> <tex-math notation="LaTeX">$\text{C}_{N}$ </tex-math></inline-formula> as trap species.
|