Chaos Moth Flame Algorithm for Multi-Objective Dynamic Economic Dispatch Integrating with Plug-In Electric Vehicles

Dynamic economic dispatch (DED) plays an important role in the operation and control of power systems. The integration of DED with space and time makes it a complex and challenging problem in optimal decision making. By connecting plug-in electric vehicles (PEVs) to the grid (V2G), the fluctuations...

Full description

Bibliographic Details
Main Authors: Wenqiang Yang, Xinxin Zhu, Fuquan Nie, Hongwei Jiao, Qinge Xiao, Zhile Yang
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/12/2742
Description
Summary:Dynamic economic dispatch (DED) plays an important role in the operation and control of power systems. The integration of DED with space and time makes it a complex and challenging problem in optimal decision making. By connecting plug-in electric vehicles (PEVs) to the grid (V2G), the fluctuations in the grid can be mitigated, and the benefits of balancing peaks and filling valleys can be realized. However, the complexity of DED has increased with the emergence of the penetration of plug-in electric vehicles. This paper proposes a model that takes into account the day-ahead, hourly-based scheduling of power systems and the impact of PEVs. To solve the model, an improved chaos moth flame optimization algorithm (CMFO) is introduced. This algorithm has a faster convergence rate and better global optimization capabilities due to the incorporation of chaotic mapping. The feasibility of the proposed CMFO is validated through numerical experiments on benchmark functions and various generation units of different sizes. The results demonstrate the superiority of CMFO compared with other commonly used swarm intelligence algorithms.
ISSN:2079-9292