A Seneta's Conjecture and the Williamson Transform

Considering slowly varying functions (SVF), %Seneta (2019) Seneta in 2019 conjectured the following implication, for $\alpha\geq1$,$$\int_0^x y^{\alpha-1}(1-F(y))dy\textrm{\ is SVF}\ \Rightarrow\ \int_{0}^x y^{\alpha}dF(y)\textrm{\ is SVF, as $x\to\infty$,}$$where $F(x)$ is a cumulative distribution...

Full description

Bibliographic Details
Main Authors: Edward Omey, Meitner Cadena
Format: Article
Language:English
Published: University of Maragheh 2023-09-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_706712_1874b9e9f26269a43add982e3eaf0042.pdf
_version_ 1797666612612956160
author Edward Omey
Meitner Cadena
author_facet Edward Omey
Meitner Cadena
author_sort Edward Omey
collection DOAJ
description Considering slowly varying functions (SVF), %Seneta (2019) Seneta in 2019 conjectured the following implication, for $\alpha\geq1$,$$\int_0^x y^{\alpha-1}(1-F(y))dy\textrm{\ is SVF}\ \Rightarrow\ \int_{0}^x y^{\alpha}dF(y)\textrm{\ is SVF, as $x\to\infty$,}$$where $F(x)$ is a cumulative distribution function on $[0,\infty)$. By applying the Williamson transform, an extension of this conjecture is proved. Complementary results related to this transform and particular cases of this extended conjecture are discussed.
first_indexed 2024-03-11T20:00:56Z
format Article
id doaj.art-e81af5e9a7294ec2a3c71e2fa7541d2d
institution Directory Open Access Journal
issn 2322-5807
2423-3900
language English
last_indexed 2024-03-11T20:00:56Z
publishDate 2023-09-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj.art-e81af5e9a7294ec2a3c71e2fa7541d2d2023-10-04T08:29:38ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002023-09-0120422724110.22130/scma.2023.1983415.1223706712A Seneta's Conjecture and the Williamson TransformEdward Omey0Meitner Cadena1Dept. MEES, Campus Brussels, KU Leuven, Warmoesberg 26, Brussels, Belgium.DECE, Universidad de las Fuerzas Armadas, Sangolqui, Ecuador.Considering slowly varying functions (SVF), %Seneta (2019) Seneta in 2019 conjectured the following implication, for $\alpha\geq1$,$$\int_0^x y^{\alpha-1}(1-F(y))dy\textrm{\ is SVF}\ \Rightarrow\ \int_{0}^x y^{\alpha}dF(y)\textrm{\ is SVF, as $x\to\infty$,}$$where $F(x)$ is a cumulative distribution function on $[0,\infty)$. By applying the Williamson transform, an extension of this conjecture is proved. Complementary results related to this transform and particular cases of this extended conjecture are discussed.https://scma.maragheh.ac.ir/article_706712_1874b9e9f26269a43add982e3eaf0042.pdfregular variationde haan classtruncated momentswilliamson transform
spellingShingle Edward Omey
Meitner Cadena
A Seneta's Conjecture and the Williamson Transform
Sahand Communications in Mathematical Analysis
regular variation
de haan class
truncated moments
williamson transform
title A Seneta's Conjecture and the Williamson Transform
title_full A Seneta's Conjecture and the Williamson Transform
title_fullStr A Seneta's Conjecture and the Williamson Transform
title_full_unstemmed A Seneta's Conjecture and the Williamson Transform
title_short A Seneta's Conjecture and the Williamson Transform
title_sort seneta s conjecture and the williamson transform
topic regular variation
de haan class
truncated moments
williamson transform
url https://scma.maragheh.ac.ir/article_706712_1874b9e9f26269a43add982e3eaf0042.pdf
work_keys_str_mv AT edwardomey asenetasconjectureandthewilliamsontransform
AT meitnercadena asenetasconjectureandthewilliamsontransform
AT edwardomey senetasconjectureandthewilliamsontransform
AT meitnercadena senetasconjectureandthewilliamsontransform