Fabrication of γ-cyclodextrin-Based metal-organic frameworks as a carrier of cinnamaldehyde and its application in fresh-cut cantaloupes

Cinnamaldehyde (CA) is a promising antimicrobial agent for the preservation of fruits and vegetables due to its excellent antibacterial activity. The application is however, limited by its unstable and volatile properties. A biocompatible carbon dots hybrid γ-cyclodextrin-based metal organic framewo...

Full description

Bibliographic Details
Main Authors: Jinxin Che, Keqin Chen, Jaorao Song, Ying Tu, Okwong Oketch Reymick, Xiumei Chen, Nengguo Tao
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Current Research in Food Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2665927122001952
Description
Summary:Cinnamaldehyde (CA) is a promising antimicrobial agent for the preservation of fruits and vegetables due to its excellent antibacterial activity. The application is however, limited by its unstable and volatile properties. A biocompatible carbon dots hybrid γ-cyclodextrin-based metal organic framework (CD/MOF) was developed by the seed-mediated method to improve the encapsulation and sustained continuous release of CA. CD/MOF-0.5 exhibited a CA loading efficiency of 28.42% and a sustained release duration time of more than 15 days at 8 oC. The release kinetics results showed that the release behavior of CD/MOF-0.5 fitted well with the Korsmeyer–Peppas release kinetics model, indicating that its sustained release is mainly controlled by diffusion. Both the Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that CD/MOF-0.5 and CA molecules were linked by hydrogen bonds. Due to the high sustained release performance, CA-loaded CD/MOF-0.5 considerably inhibited the growth of Escherichia coli, hence preventing the spoilage of fresh-cut cantaloupes. CD/MOF-0.5/CA treatment also maintained the qualities of the fresh-cut cantaloupes, prolonging their edibility to five days. This work provides a promising strategy for the prevention of spoilage in food industry.
ISSN:2665-9271