A Characterization of Procyclic Groups via Complete Exterior Degree

We describe the nonabelian exterior square <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover&...

Full description

Bibliographic Details
Main Authors: Bernardo G. Rodrigues, Francesco G. Russo
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/7/1018
_version_ 1797212328130772992
author Bernardo G. Rodrigues
Francesco G. Russo
author_facet Bernardo G. Rodrigues
Francesco G. Russo
author_sort Bernardo G. Rodrigues
collection DOAJ
description We describe the nonabelian exterior square <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover><mi>G</mi></mrow></semantics></math></inline-formula> of a pro-<i>p</i>-group <i>G</i> (with <i>p</i> arbitrary prime) in terms of quotients of free pro-<i>p</i>-groups, providing a new method of construction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover><mi>G</mi></mrow></semantics></math></inline-formula> and new structural results for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover><mi>G</mi></mrow></semantics></math></inline-formula>. Then, we investigate a generalization of the probability that two randomly chosen elements of <i>G</i> commute: this notion is known as the “complete exterior degree” of a pro-<i>p</i>-group and we will use it to characterize procyclic groups. Among other things, we present a new formula, which simplifies the numerical aspects which are connected with the evaluation of the complete exterior degree.
first_indexed 2024-04-24T10:40:38Z
format Article
id doaj.art-e830982e20e3436c90e3c4141722b81a
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-24T10:40:38Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e830982e20e3436c90e3c4141722b81a2024-04-12T13:22:38ZengMDPI AGMathematics2227-73902024-03-01127101810.3390/math12071018A Characterization of Procyclic Groups via Complete Exterior DegreeBernardo G. Rodrigues0Francesco G. Russo1Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield, Pretoria 0028, South AfricaDepartment of Mathematics and Applied Mathematics, University of Cape Town, Private Bag X1, Rondebosch, Cape Town 7701, South AfricaWe describe the nonabelian exterior square <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover><mi>G</mi></mrow></semantics></math></inline-formula> of a pro-<i>p</i>-group <i>G</i> (with <i>p</i> arbitrary prime) in terms of quotients of free pro-<i>p</i>-groups, providing a new method of construction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover><mi>G</mi></mrow></semantics></math></inline-formula> and new structural results for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mover accent="true"><mo>∧</mo><mo>^</mo></mover><mi>G</mi></mrow></semantics></math></inline-formula>. Then, we investigate a generalization of the probability that two randomly chosen elements of <i>G</i> commute: this notion is known as the “complete exterior degree” of a pro-<i>p</i>-group and we will use it to characterize procyclic groups. Among other things, we present a new formula, which simplifies the numerical aspects which are connected with the evaluation of the complete exterior degree.https://www.mdpi.com/2227-7390/12/7/1018nonabelian exterior squarepro-p-groupsSchur multiplierfree profinite groups
spellingShingle Bernardo G. Rodrigues
Francesco G. Russo
A Characterization of Procyclic Groups via Complete Exterior Degree
Mathematics
nonabelian exterior square
pro-p-groups
Schur multiplier
free profinite groups
title A Characterization of Procyclic Groups via Complete Exterior Degree
title_full A Characterization of Procyclic Groups via Complete Exterior Degree
title_fullStr A Characterization of Procyclic Groups via Complete Exterior Degree
title_full_unstemmed A Characterization of Procyclic Groups via Complete Exterior Degree
title_short A Characterization of Procyclic Groups via Complete Exterior Degree
title_sort characterization of procyclic groups via complete exterior degree
topic nonabelian exterior square
pro-p-groups
Schur multiplier
free profinite groups
url https://www.mdpi.com/2227-7390/12/7/1018
work_keys_str_mv AT bernardogrodrigues acharacterizationofprocyclicgroupsviacompleteexteriordegree
AT francescogrusso acharacterizationofprocyclicgroupsviacompleteexteriordegree
AT bernardogrodrigues characterizationofprocyclicgroupsviacompleteexteriordegree
AT francescogrusso characterizationofprocyclicgroupsviacompleteexteriordegree