Weather Radar Parameter Estimation Based on Frequency Domain Processing: Technical Details and Performance Evaluation

Parameter estimation is important in weather radar signal processing. Time-domain processing (TDP) and frequency-domain processing (FDP) are two basic parameter estimation methods used in the weather radar field. TDP is widely used in operational weather radars because of its high efficiency and rob...

Full description

Bibliographic Details
Main Authors: Shuai Zhang, Yubao Chen, Zhifeng Shu, Haifeng Yu, Hui Wang, Jianjun Chen, Lu Li
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/23/5624
Description
Summary:Parameter estimation is important in weather radar signal processing. Time-domain processing (TDP) and frequency-domain processing (FDP) are two basic parameter estimation methods used in the weather radar field. TDP is widely used in operational weather radars because of its high efficiency and robustness; however, it must be assumed that the received signal has a symmetrical or Gaussian power spectrum, which limits its performance. FDP does not require assumptions about its power spectrum model and has a seamless connection to spectrum analysis; however, its application performance has not been fully validated to ensure its robustness in an operational environment. In this study, we introduce several technical details in FDP, including window function selection, aliasing correction, and noise correction. Additionally, we evaluate the performance of FDP and compare the performance of FDP and TDP based on simulated and measured weather in-phase/quadrature (I/Q) data. The results show that FDP has potential for operational applications; however, further improvements are required, e.g., windowing processing for signals mixed with severe clutter.
ISSN:2072-4292