On q-integrals over order polytopes (extended abstract)

A q-integral over an order polytope coming from a poset is interpreted as a generating function of linear extensions of the poset. As an application, theq-beta integral and aq-analog of Dirichlet’s integral are computed. A combinatorial interpretation of aq-Selberg integral is also obtained.

Bibliographic Details
Main Author: Jang Soo Kim
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2020-04-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/6413/pdf
Description
Summary:A q-integral over an order polytope coming from a poset is interpreted as a generating function of linear extensions of the poset. As an application, theq-beta integral and aq-analog of Dirichlet’s integral are computed. A combinatorial interpretation of aq-Selberg integral is also obtained.
ISSN:1365-8050